Author: ABBdriveX

AQ: Current transformer selection

When you want to select current transformer with appropriate rated power for your power system, you need to consider that value of rated power of selected current transformer should be higher from sum of values of load and Joules’ losses which are a consequence of flow current through conductors which connect current transformer with relay.

So, if you have a long distance between current transformer and relay, then you need to consider one of two following manners for solving this problem:
1. replacing existing current transformer with current transformer with higher power,
2. replacing existing conductors with conductors with lower cross-section.

This solution is a consequence of necessity for reducing of Joules’ losses which are a consequence of flow current through conductors which connect current transformer with relay. If you have conductors whose value of rated current is 5A, you will have Joules’ losses P=R*I^2=R*5^2=25*R. Otherwise, if you have conductors whose value of rated current is 1A, you will have Joules’ losses P=R*I^2=R*1^2=R.
On this way, Joules’ losses in your selected conductors will be reduced 25 times and selected current transformer will be unloaded by reducing additional load.

AQ: Power factor of a generator connected to national grid

Q: What should be the power factor of a generator connected to national grid in order to have maximum stability? Whether it should be high or low?

Steady State Stability:
1. National grid is like a infinite bus for an average size Generator. We can observe stable operation of generator within its capability limit for all ranges of power factor for infinite time , irrespective of power factor.
2. Observe the load cycle, The generators operate in overexcitation mode (lagging pf) during the day & during night ,when transmission lines generate enough reactive the same generators operate stable in underexcitation mode (leading pf).
3. Therefore as long as there is no instance of large disturbance, we can observe stable operation of generator within its capability limit for all ranges of power factor.

Transient Stability:
1. Depends upon the initial condition of the generator operation (see on Power vs Sin-delta plot)
2 The level of power thrown-off causing the disturbance & Equal area criterion of the energy balance & Inertia.
3 During transient/disturbance, the stability is ensured better if the angle delta (rotor angle or power angle) is small, meaning the amount of store energy in the rotating system is high. Theoretically this means delta angle =0 to have robust stability, but it is practically impossible to have power generation at that value.
4 In order to have maximum stability & power generation simultaneously , the value of rotor angle has to be non zero , on positive side. (negative means motor operation).
To Conclude : It means over-excited mode.(lagging pf ). Many colleges in discussion chain above have written near about 0.9 – 0.94 lagging . They are correct.

AQ: Variable frequency drive saves energy on fans

Like pumps, fans consume significant electrical energy while serving several applications. In many plants, the VFDs (variable frequency drives) of fans together account for 50% to 60% of the total electricity used. Centrifugal fans are the most common but some applications also use axial fans and positive-displacement blowers. The following steps help identify optimization opportunities in systems that consume substantial energy running the fan with VFDs.

Step 1: Install variable frequency drive on partially loaded fans, where applicable. Any fan that is throttled at the inlet or outlet may offer an opportunity to save energy. Most combustion-air-supply fans for boilers and furnaces are operated at partial loads compared to their design capacities. Some boilers and furnaces also rely on an induced-draft fan near their stack; it must be dampened to maintain the balanced draft during normal operation. Installing VFDs on these fans is worthy of consideration.

Similar to centrifugal pump operation, the affinity law applies here. Because constant-speed motors consume the same amount of energy regardless of damper position, using dampers to maintain the pressure or flow is an inefficient way to control fan operation.

Step 2: Switch to inlet vane dampers. These dampers are slightly more efficient than discharge dampers. When a VFD can’t be installed to control fan operation, shifting to inlet vane control could provide marginal energy savings.

Step 3: Replace the motor on heavily throttled fans with a lower speed one, if applicable. Smaller capacity fans with high-speed motor VFDs operate between 25% and 50% of their design capacity. Installing a low-speed motor VFD could save considerable energy.

For example, a 2,900-rpm motor drove a plant’s primary combustion air fan with the discharge side damper throttled to about 75–80%. Installing a VFD on this motor would save considerable energy, but we recommended switching to a standard 1,450-rpm motor. This was implemented immediately, as 1,450-rpm motors are readily available. With the lower-speed motor, the damper can be left at near 90% open; the fan’s power consumption dropped to less than 50% of the previous level.

Step 4: Control the speed when multiple fans operate together. Fans consume a significant amount of energy in industrial cooling and ventilation systems. Supply fans of HVAC systems are good candidates for speed control by variable frequency drives, if not already present.

Step 5: Switch off ventilation fans when requirements drop. Ventilation systems usually run a single large centrifugal fan or several axial exhaust fans. A close look at their operation may indicate these fans could be optimized depending upon the actual ventilation needs of the building they serve.

Recently, we surveyed a medium-sized industrial facility where 26 axial-type exhaust fans were installed on the roof of one building. All fans were operating continuously, even though the building had many side wall openings and not much heat generated inside. To better conserve energy, we suggested the 26 fans be divided into four groups with variable frequency drives controlled for each group. As a result, energy consumption for the fans dropped by about 50%, as only the required fan groups now are switched on.

At another industrial site, the exhaust fan of a paint booth ran continuously but paint spraying was scheduled only about 50% of the time. Modifying fan operation with variable frequency drive and delayed sequencing saved energy.

Pumps and fans are the most common energy-consuming devices

AQ: Negative sequence

Negative sequence will not cause a physical rotation. This component creates a field which, though not strong enough, tries to counter the primary field, An increase in this component will cause the motor to overheat due to the opposition. a physical rotation is not likely to occur.

Negative sequence currents are produced because of the unbalanced currents in the power system. Flow of negative sequence currents in electrical machines (generators and motors) are undesirable as these currents generates high temperatures in very short time. The negative sequence component has a phase sequence opposite to that of the motor and represents the amount of unbalance in the feeder. Unbalanced currents will generate negative sequence components which in turn produces a reverse rotating filed (opposite to the synchronous rotating filed normally induces emf in to the rotor windings) in the air gap between the stator and rotor of the machines. This reverse rotating magnetic field rotates at synchronous speeds but in opposite direction to the rotor of the machine. This component does not produce useful power, however by being present it contributes to the losses and causes temperature rise. This heating effect in turn results in the loss of mechanical integrity or insulation failures in electrical machines within seconds. Therefore it is undeniable to operate the machine during unbalanced condition when negative sequence currents flows in the rotor and motor to be protected. Phase reversal will make the motor run in the opposite direction and can be very dangerous, resulting in severe damage to gear boxes and hazard to operating personnel.

AQ: Low impedance fault

A low impedance fault is usually a bolted fault, which is a short circuit. It allows a high amount of fault current to flow, and an upstream breaker or fuse usually senses the high current and operates, ending the event. A high impedance fault, usually an arc fault, is a fault of too high of an impedance for overcurrent protection to detect and operate, so the fault exists for long period of time without tripping upstream protection. Examples of arc faults are: A high or medium voltage distribution utility wire falling to earth in a Y grounded system and arcing to earth where no breaker or fuse will clear; another example is any fault tracking through a substance such as cable insulation or even air….this could be wiring within a building wall with a fault that lasts long enough to ignite the building wall it is installed in, which happens all the time somewhere (sometimes called “arc through char”). Another high impedance fault is one within a transformer secondary coil, arcing through the coil insulation and transformer oil (oil cooled units)…the arc will boil the oil into component gases such as acetylene and hydrogen and if the arc fault lasts long enough and gets to the gases, the gases may explode…and the primary fuse protection will likely not detect this for some time. There are many other examples of high impedance faults. One way to tell a high impedance fault or arc fault is if there is a protecting breaker or fuse that did not operate for a fault…if the breaker or fuse are correctly sized and working properly and did not operate that usually indicates a high impedance fault….a short circuit usually generates high enough current to trigger breaker/fuse operations (assuming normal circuit impedance is low). Another way to look at it is any fault in a power circuit with an impedance such that less than “available” fault current flows.

AQ: Why designing an ethernet network IP scheme?

Depends on the size of the network (# of devices planned on connecting), for medium to large corporate networks go 10.x, for home and small business 192.168.x, or to 172.16.x. I would think the IP plan would be looking at least 10 – 20 years out. Changing IP schemes is hard, especially on a controls LAN, you wouldn’t want to undertake this task to frequently. Also consider any routing / firewalling / DMZing that you may want to do between the controls LAN and the business network (ideally these are separated networks).

Here’s some things to consider:

Number of devices or potential devices on the network
You may want to use a Class A subnet when you have or will have a large number of devices or a Class C when you have or will have a small number of devices.

Amount of traffic
A large subnet will more likely expose devices to more traffic. A smaller network may be employed to segment and/or control the amount of data that must be handled by a device.

Security
A large network (e.g., Class A) network may be more difficult to restrict access to or exposure of devices.

Simplicity
A Class A network is a flatter architecture and may be simpler to manage because you don’t have to worry about routing, gateways, and/or firewalls as much. This has to be balanced with security and traffic issues though.

Others
There are other considerations too…

In my experience, connecting with the “business” side of things is not technically difficult with an appropriate firewall/router. However, I have often found that the political challenges are more difficult. I have often butted heads with IT folks who have a fortress mentality and don’t understand the constraints, limitations, restrictions, and special considerations needed for industrial control systems. Many times, the best solution is to have a well defined line of demarcation where the IT folks take care of their side and the control guys take care of the control side. Most IT folks are OK with that as long as they can quarantine the control side to their satisfaction.

When it comes to selecting the firewall/router, you will need to take into consideration the protocols passing through it. If it’s the nominal business protocols like http, ftp, rdp, ssh, etc., then any business class device will typically work. However, if industrial protocols like CIP, Ethernet/IP, or OPC will be passing through, you will need to confirm that the firewall/router supports them specifically. When making the link, the important thing is the type of packet filtering and address translation rules that are configured in the firewall router. The IT folks might be more happy if they can setup a VLAN just for the controls.

AQ: Renewable Energy in India

Holistic and Combined i.e Hybrid Renewable Energy Generation per Taluka / District of Each state with Energy Potential study with Investment seeking proposal with land (barren) identified with Revenue department clearances and also with a clear MAP of Evacuation with existing Transmission lines and future lines to planned, which shall be appended to RfP and not ask each developer to identify the location and struggle with Government Administration (which will increase time and Costs (read wrong costs)) complying to Land Acquisition bill and also eliminate the real estate babus to relinquish 5000 acres of land per state, which is BENAMI now…..I do not know how this excess land in BENAMI exist when we have Land ceiling Act!!

In order to do an extensive and credible study to explore renewable energy potential in each Taluka, State and Central Government Can hire international Consultancies with Video Documentation with GPRS MAPS to know the real truth and there shall not be much difference between reports and the ground reality, otherwise, hold these agencies responsible with necessary punitive clauses.

These costs can be recovered in the form of Bid document charges, which any serious developer will pay. However, the Equity selling proxy promoters, who have access to the power corridor and bid with Net worth Financial capacity, but, not worthy of any Renewable energy promotion as we saw in JNNSM wherein a large corporate bought equity from the other bidders and later an investigation took place…..

Following is the excerpts of the Mail written to MNRE and KREDL, in Jan 2012 (now we see their web site showing Biomass study is under progress):

For Power evacuation, we need to know the following (as we can’t use the existing data):

a). Distance from the Power generation site, which normally comes under KREDL (single window agency) i.e where one can put up the plant by undergoing NA or KREDL has identified land bank in Yadgir, but, how many km is the Substation from these sites, which we verified, was difficult to ascertain due to patch lands and the distance was over 10 km in certain cases.

b). Whether these substations can accept 20 MW or 10 MW or 5 MW of intermittent Solar PV load (non firm power which at times may create grid related disturbances etc). Biomass power is firm power as long as Firm biomass feed stock is available.

Therefore, we have been writing to many agencies involved to come out with a common approach, wherein the bidding documents identify clearly the SLDCs where the Project Developer can upload (evacuate) the energy generated with an in principle approval (with location MAP with transmission distances etc) from SLDC and ESCOM to accept such Renewable energy as the States are bound to buy the RE under RPO.

If the investor or RE Generator has to run around to know the fundamentals, then, please try to imagine how many man hours will be wasted and how much money gets drained from many participants for the same location? Instead, these data is available with KPTCL / KREDL / KERC / ESCOMs or such multiple organisation, but, Single window agency KREDL does not produce such VITAL information in their bid documents, hence, we as entrepreneurs are trying to tie the loose ends and make things happen for the good of our state.

I hope you understand our concern and append the finer details of evacuation, project site, land bank, the maximum capacity of MWh the substation can take or any upgrade is needed etc be appended in the bidding documents or even in your web sites also.

Further, any new substations are under development, the same with a clearly identified MAP with distances will help the people to understand the grid network to ensure the grid sustainability, reduction in transmission lines and hence the losses can be planned while making the bids, which otherwise will be a

AQ: Different brushes at same ring

Recently I had to do a report explain why is impossible join brushes, at same time, from different companies, even with same characteristics.
I used the follow points:
1 – Even with same characteristics the final results is different because tue proportion of material and/or manufacturing process different lead to a different brushes;
2 – Guarantee, because our machine is new, and is a good practice use brushes recommended by Manufacturer;
3 – The film, that is formed on the rings by the brushes could change (but I don’t have any sure if chage for bad);

Unfortunately my report was based on experience for old engineer and recommendation of Manufacturer.

One
of the most important thing about brushes in high current density
environments is uniformity. If there are any variations in material
composition, manufacturing methods, dimensions, porosity, density,
surface hardness, friction coefficient, pig-tail attaching means, size
of pig-tail conductor, etc., there will be a variation in the current
division and/or wear.

Ultimately some brushes will carry more current than others and the increased current density in those brushes will lead to overheating, pitting, scoring, and ultimately costly repairs to the commutator/slip-rings. You might also accidentally mix brush grades when dealing with multiple vendors.

Although manufacturers publish data for brush materials which may prove to be very close to one another, mixing them on a collector surface is not a good practice. Any signs of undesirable performance would be difficult to identify the root cause for and small differences in electrical resistance can produce staggeringly varied performance from each brush.

While the materials used have good material data supplied with them, the manufacturing of the cable connection does not which can account for many times the resistivity differences of the material. Brush manufacturers do use a variety of materials here also and so some brushes, even of the same grade and from the same supplier but with different connection material, cannot be used together.

Mixing of grades is an uncontrolled practice which leads to variable surface conditions especially where the numbers of each grade used is not controlled.

Lower resistance brushes will “grab” the current possibly over filming the collector surface leaving the higher resistance brushes to run at lower than prescribed minimum current densities which results in higher coefficients of friction at the brush/collector interface. You would never know when your film is stable which endangers machine life.

Most machine manufacturers select a grade of carbon to use which is useful at the machines fully rated capacity. However, manufacturing tolerances, specifications etc can produce a machine vastly over rated for your application. Running the manufacturers supplied brushes at reduced load can be very damaging. Most Manufacturers will accept that you need another brush grade for your specific use and will maintain warranty provided they have been consulted regarding any changes.

Many overlook that by moving a machine from one position in their plant to another, that they well need to consider the brush grade at that time also. Sometimes a simple and cost effective reduction of brushes (of the same grade) within the machine can increase plant reliability and longevity dramatically. Other times a consultation with a brush expert can lead to an alternative grade to produce better performance.

AQ: Stiff voltage sources

Stiff voltage sources are not problematic as long as they don’t get in the way of the solver’s attempts to linearize the behavior of the circuit matrix via step size reduction. It is the highly nonlinear stiff sources that are heavily fed back into the rest of the circuitry that can cause the solver to hang. Linear sources that are ground referenced or nonlinear ones that don’t feed back anywhere are not likely to cause problems.

In the initial versions of SPICE there were a few elements that could not be simulated directly with nodal analysis in the circuit’s admittance matrix, ideal inductors and voltage sources being the most common among them. However, starting with some version of SPICE 2 this deficiency was removed when modified nodal analysis (MNA) was added to the simulation engine (requiring an additional computational enhancement sometimes called the auxiliary matrix, I believe).

Modified nodal analysis is an extension of nodal analysis which not only determines the circuit’s node voltages (as in classical nodal analysis), but also some branch currents. This permits the simulation engine to crunch ideal inductors and voltages sources (true Thevenin circuit elements) but at a cost of incrementally increasing the matrix size and difficultly about twice as much as for when “easy” Norton type elements (e.g., resistors, capacitors and current sources) are added.

In other words, adding one ideal inductor slows down the simulation about as much as adding two ideal capacitors. However, there is a small additional silver lining to this, as it also comes with the possible advantage of “free” (whether you use it or not) automatic sensing of instantaneous inductor current.

LTspice (my simulator of choice) treats inductors in a special way in that they are normally given a default series resistance of 1 m-ohm unless a value of zero is explicitly entered for that parameter. Having a non-zero series resistance allows LTspice to “Nortonize” the inductor such that it can be processed as a normal branch within the circuit matrix, thereby allowing the simulation to run marginally faster. This also makes the inductor “look” like any other of the “easy” elements so that it is not a numerical problem to parallel it with a stiff voltage source. If a series resistance parameter is entered for a voltage source, it also becomes Nortonized by LTspice.

Nortonizing an inductor or voltage source comes at the cost of giving up free sensing of the instantaneous branch current, which is not a cost at all if this current is not being used elsewhere. However, as soon as you call out the inductor current in *any way* in any b-source behavioral expression, LTspice changes the default series resistance for that inductor back to zero ohms and reverts back to the standard MNA way of processing it within the circuit matrix so that it can get access to the inductor’s instantaneous current.

Only true Thevenin type elements have the possibility of being used as the instantaneous current sense for a current controlled switch (or other similar current controlled devices). The SPICE standard is to only allow voltage sources for this purpose, but apparently LTspice accepts zero ohm inductors as well.

One last note, LTspice is indeed able to measure the current in any element, including Norton type devices, but for these devices the current measured will necessarily be a time delayed version that may not be suitable for tight feedback loops (there is a warning about this in the LTspice Help file section on b-sources).

AQ: TIA portal, a nightmare!

I have been using TIA since it was launched and it has come on leaps and bounds since it was first launched. Its a great tool and as already mentioned it has its bad aspects but it also has its good aspects. The biggest improvement (in my opinion) is the drag and drop functionality in the WinCC part and the code editor. Just need a field PG to be launched with screens to fold out so you can have multiple screen!!

They are moving in the right direction and it was always going to be resource hungry WinCC was bad enough for that in previous versions.

New improvements make a long list but one of the most recent is being able to switch a DB to and from optimised. How many times in previous versions did I forget to check the box then have to delete the DB and create it again. PID loop tuning function within TIA is useful and if you look on the Siemens Automation website (UK/Europe) the example files are growing all the time and they have some great examples that can be integrated easily in to application, I have used the ASi maintenance and monitoring example which was very well put together along with a few others. Even if you don’t use them but need some pointers on which way to go they are a good starting point.

I could list the gripes I have, but all in all its coming together nicely, just need a decent well priced Field PG to run it on £5K is a bit steep for an M4 which maybe no great improvement on the M3 which, in my opinion, wasn’t very good.

Few months ago I had a project with TIA Portal v11. Hardware targets: Simatic S7-300 and Simatic Comfort Panels.
Compared to RSLogix 5000 / FactoryTalk View for example, TIA Portal is a nightmare, especially on commissioning and start-up, when the pressure is huge and you have to work FAST.

The main problems:
1. Very slow on every operation (compiling, downloading, on-line editing, project printing/documenting).
2. Requires a very high resolution display (it is almost unusable on a 1366×768 laptop)

3. Weird behavior (HMI display alterations, crashes).