AQ: What is SynRM motor?
Many others thirty years ago, synchronous reluctance motors (SynRM) have finally replacing the traditional AC induction motors in the industry. ABB has claimed achieving IE4 efficiency with SynRM, a great improvement from IE2 efficiency with the traditional induction motors, for the same motor envelope size and input power.
A SynRM is a true AC machine with or without permanent magnets on the rotor. It is totally different from the closed-loop controlled, permanent magnet brushless DC machines (BLDC) in that one would never be able to get rid of torque ripples as that have been achieved in commonly used BLDC machines.
The difference is on the rotor: copper or aluminum bars for inductance motor (squirrel cage after joining end disks) vs. flux barriers (air pockets) in SynRM. The SynRM rotor can be further enhanced by inserting permanent magnets in the air pockets for a machines called PM assisted SynRM. High efficiency is achieved for two reasons: 1) no copper loss due to the lack of rotor bars and end disks; and 2) high inductance difference between d- and q-axes (Ld-Lq) because of flux barriers and motor torque linearly proportional to (Ld-Lq).
In comparison with the traditional AC induction motor, a SynRM motor needs a frequency inverter and when permanent magnets are present in the rotor, a rotor position feedback sensor. The drawbacks of SynRM are the motor torque ripples due to switching operation, inherited small air gap, etc.




 Thus, in the case of a 6 diode (6 pulses) bridge, the most pronounced generated harmonics are the 5th and the 7th ones, whose magnitudes may vary from 10% to 40% of the fundamental component, depending on the power line impedance. In the case of rectifying bridges of 12 pulses (12 diodes), the most harmful harmonics generated are the 11th and the 13th ones. The higher the order of the harmonic, the lower can be considered its magnitude, so higher order harmonics can be filtered more easily. As the majority of VFD manufacturers, Iacdrive produces its low voltage standard
 Thus, in the case of a 6 diode (6 pulses) bridge, the most pronounced generated harmonics are the 5th and the 7th ones, whose magnitudes may vary from 10% to 40% of the fundamental component, depending on the power line impedance. In the case of rectifying bridges of 12 pulses (12 diodes), the most harmful harmonics generated are the 11th and the 13th ones. The higher the order of the harmonic, the lower can be considered its magnitude, so higher order harmonics can be filtered more easily. As the majority of VFD manufacturers, Iacdrive produces its low voltage standard