Author: ABBdriveX

AQ: Variable frequency drive installation requirements

Variable frequency drives are electronic devices, they have stringent requirements in installation environment which is specified in its user manual normally. In exceptional circumstances, if it does not meet these requirements, we must adopt appropriate suppression measures: vibration is the main reason to cause electronic devices mechanical damaged, for big shock and vibration occasions, we should use rubber anti-vibration measures; moisture, corrosion gas and dust will cause electronic devices such as corrosion, poor connection, insulation reduced and then cause short circuit, as a precautionary measure, we should do dust treatment and corrosion control for the control panel, and adopt closed structure; temperature is the key factor to affect electronic devices life and reliability, especially semiconductor devices, we should install the variable frequency drive according to its required installation environment or install additional air conditioning and avoid direct sunlight.

In addition to the above points, inspect the variable frequency drives air filter and cooling fan periodic is also very necessary. For special alpine occasions, to avoid the microprocessor can’t work properly due to temperature too low, we should take necessary measures such as setting the air heater.

AQ: Variable frequency drive power anomalies

Variable frequency drive power anomalies can be divided into following three types: phase loss, low voltage and power off, sometimes they maybe appear mixed. The main reasons for these anomalies are transmission line impact by wind, snow and lightning, sometimes it’s the power supply system appear ground wire and phase short circuit. The lightning is very different due to geographical and seasonal factors. In addition to voltage fluctuations, some power grid or self-generation units will have frequency fluctuations, and these phenomena maybe appear repeated in short times, in order to ensure normal operation, the variable frequency drive power supply also need to make corresponding requirements.

If there is a direct-start motor or cooker or other equipment near the variable frequency drive, to avoid voltage decrease when these devices power on, those devices power supply should be separated with the VFD power supply to reduce influence each other.

For the applications require continues operation in instantaneous power off, in addition to select appropriate VFD drives, we also need to consider the motor load deceleration ratio. When the variable frequency drive and external control loop are adopted instantaneous power off compensation, we need to prevent over current during acceleration by detect motor speed when power on.

For the application requires continuous operation, it’s better to install additional automatic switching uninterrupted power supply devices. Like adopt diode input and single-phase control power variable frequency drives, it can continue work even if in phase loss status, but individual rectifier device current is too high, and the capacitor pulse current also high, it’s not good for the variable frequency drives reliability and service life in long time running, so we should handle it the early the better.

AQ: Avoid variable frequency drive damaged in lightning

Sometimes

AQ: Frequency inverter failure analysis

Transistor frequency inverter has the following disadvantages: easy trip, difficult re-start, poor overload capacity. As the rapid development of IGBT and CPU, the inverter drive integrates perfect self-diagnosis and fault prevention features, improve the reliability greatly.

Vector control frequency inverter has “automatic torque compensation function” to overcome “starting torque inadequate” etc. This function is the inverter uses a high-speed microcomputer to calculate the torque required at current time, to modify and compensate the output voltage quickly to offset the frequency inverter output torque changed by external conditions.

In addition, because as the inverter software development more and more perfect, we can pre-set various failures parameters in the frequency inverter, to ensure continuous running after failure resolved. For example, re-start motor in free parking process; automatic reset internal failures and maintain continuous operation; adjust running curve if load torque is too high to detect the mechanical system abnormal.

AQ: Variable frequency drive applications

Due to variable frequency drive maintenance and repair experiences.

AQ: Frequency inverter maintenance

1) In inverter regular inspection, we must cut off power before operation. Wait 4minutes (the bigger the longer, the maximum waiting time is 15 minutes) till the frequency inverter display panel LED indicator lights turn off, to make the main circuit DC filter capacitor fully discharged, and measure with a multimeter to confirm before proceeding.

2) Detach control board and main circuit from the frequency inverter, clean the inverter circuit board and internal IGBT modules, input and output chokes and other parts with brush and dust cleaner. Use cotton swab with alcohol or neutral chemical to clean PCB dirty place.

3) Check the inverter inner wire insulation has overheating traces, corrosion and discoloration or not, if found out, we should handle or replace it in time.

4) As the frequency inverter has vibration, temperature changes and other effects, screws maybe loose, we should tighten all screws.

5) Check input and output chokes, transformers, etc. is overheating, discoloration or smelly.

6) Check the intermediate circuit filter electrolytic capacitor safe valve is bulging out or not, and the outer surface has cracks, leakage, swelling and so on. Generally, the inverter filter capacitor life cycle of about five years, the inspection intervals is one year. The capacity of the capacitor can be measured by digital capacitance measurement, when the capacity drops to 80% rated capacity or less, it should be replaced.

7) Check the cooling fan operation is in good condition or not. The cooling fan lifetime is limited by bearings, we should replace the cooling fan or bearings in 2-3 years. If there are abnormal sounds and vibration, we need to replace in time.

8) Check the frequency inverter insulation resistance is in the normal range or not (all terminals with ground terminals). Note, do not use the megger to measure the circuit board, otherwise it will damage the circuit board electronic components.

9) Disconnect the inverter R, S, T terminals with power supply, and U, V, W terminals with motor cable, measure the insulation resistance between each phase conductor and each phase conductor with the protective ground terminals with the megger, to see if it’s in normal value or not, generally its higher than 1MΩ.

10) After inspection, we should use frequency inverter drive the motor with no load for a few minutes, and check the motor rotation direction.

AQ: AC drive faults analysis

It will cause a series problems during AC drive operation in various environmental conditions, take an example as: when failure occurs, AC drives protective function is activated, and the AC drive tripped immediately, the electric motor stop slowly, the red LED alarm indication turns on, the display panel shows alarm message code or fault content. Then we can analyze the variable frequency AC drive fault reasons base on the display information, if it is soft failures, we can cut of the AC drive and reset it. If the drive still not works, we need to check it manually or automatic initialization, and input the parameter values after the initialization finished. In this way, the AC drive can work if the failure is not critical. If the AC drive still can’t work after above detection, then we need to check the variable frequency drive damaged parts according to the fault phenomena, to replace components or circuit boards. Troubleshooting should follow the drives failure sequence. Like:

(1) Fault code 36, its main power failure, then the three-phase rectifier bridge modules may be breakdown shorted or opened.

(2) Fault code 14, its ground failure, check the motor windings and insulation with megger to see if it’s damaged or not.

(3) Fault code 37, its the inverter failure, the IGBT module may short-circuit breakdown. If the IGBT module short circuit, the main circuit fuse will burnout too. When a phase gate damaged, the variable frequency AC drive will appear overcurrent phenomenon, then it’s time to check the IGBT modules.

AQ: Figure out variable speed drives failures

If there is frequent current-limitation or overcurrent alarm during the variable speed drive running, we should check the loads and inverter IGBT module is normal or not, if its good, then the failure is the Hall magnetic compensation current sensor damaged on the control circuit of the variable speed drive. Hall magnetic compensation current sensor is a device to measure the current value of sinusoidal and non-sinusoidal periodic, which can truly reflect the real current waveform, to provide a control and protection signal to the variable speed drive. Generally, this device in variable frequency drive mostly is Swiss company LEM LA series components, LA Series Hall current sensor magnetic compensation can be divided into three and five terminals, for different variable speed drives capacity, the Hall current sensor magnetic compensation also is difference.

Electronic components are very sensitive to static electricity, it will cause electronic components soft breakdown and then cause the circuit board cannot work. So we should be careful when we replace the circuit board, and ensure wearing grounding wrist strap before working, make sure the strap ground directly and human body is at zero potential, in order to prevent body’s electrostatic damage to the circuit board. If there is no grounding wrist strap, we should touch the variable speed drive metal cabinet before replacing the circuit board, to ease static electricity through the variable frequency drive enclosure.

AQ: ACS800-104-0105-3 (ABB VFD Drives)

Question:
I have a problem with ABB ACS800-104-0105-3 drive model, the output current reading on the VFD is always double the reading of the clamp ampere(i.e. drive reading= 40 A, clamp ampere reading=20 A), what is the procedure that i can follow to detect the cause of this error?

Answer:
I don’t know about ABB drives, but hope this thing will help you.
1. The variable frequency drive may have problem with current sensor, just replace with another drive for comparison.
2. Make sure you use, true RMS type clamp meter.
3. If there is leakage current (through cable insulation and air) between each phase. This normally because of the cable insulation already degraded. Add output reactor and replace the cable with suitable insulation can fix this kind of problem.
4. If there is leakage current between this VFD drive and the other drives, that both motor cable is quiet long and run in parallel together.

To Collect more data and get more idea, you can do this:
1. Clamp all the 3 phase motor cable together using clamp. The reading will show you the leakage current. Normally about 10% of motor rated current at full load.
2. Check the current on each phase, and see if the current is balance for each phase.
3. Run the variable frequency drive without the motor cable, check the current reading and clamp meter.
4. Run the AC drive with the motor cable but without the motor, check again the reading and clamp meter.
5. Run the drive with motor, check if any oscillation in motor current.
6. Check current input to the AC drive inverter.
7. Turn of the other drive (if the motor cable run parallel together with other VFDs), and see if any change in current.

AQ: Sensorless motor control with TI and Microchip

Question:
I need to learn about the sensorless control of permanent magnet AC (PMAC) motors. Can you recommend a tutorial and/or open source code for the sensorless motor control using the
a) TI TMS320 series processor, or
b) Microchip dsPIC33EP128 series processor?

Answer:
I have used Microchip and TMS320 to develop VFD. They provide you with a demo kit, PCB and a motor. It take me half a day to get the demo PCB running with my PMSM. Then I copy their design to my own.

The Microchip solution provides you with demo code. I used that before, but it require quite a bit of C programming, and motor tuning take even longer. The demo code and application note are no where near the performance of the Ti solution (I do not work for Ti -so I am not advertising). I take me a week to get my motor spinning with the demo kit from Microchip.

Then there are the International Rectifier solution that is available from many years. The IR sensorless motion control solution have implemented a FOC motor control in FPGA. So you don’t need to write code for motor control. In the chip, it also has a 8051 cpu. You write the program in C; 1 page of code will get a washing machine working. It takes me 1 day to get a PMSM motor running with this solution.

I will use the TI solution for high end motor control – such as a US$40,000 dollar, 100HP direct drive PCP used in the oil field.
I will use the IR solution for a water pump, washing machine – things that is a few kw.
I will use the microchip for solution for toys, because Microchip is so much fun to play with.