Author: ABBdriveX

AQ: Circuit Breakers tests

1- For small circuit breakers we can do the test of Magnetic protection behavior by using “Injection Current Apparatus”, and suppose the CB’s results were good, do you think it’s enough? I’m sure not, because by this apparatus we can inject the necessary current with a very low voltage value (5-15V), so, do you think that the arc will be the same if we have the same current but with “400V”?

2- The same question for “Short Circuit Tests”

Personally, I done the tests of many MCBs for different manufactures by using “Injection Current Apparatus”, and I saw the same tests in laboratory in France for the same MCBs by injection the same currents values with 230V or 400V depending on the CB, be sure, the results weren’t the same, we found some differences for Magnetic protection tests, and big differences for Short Circuit tests.

AQ: Circulating current in parallel transformers

When two transformers are in a parallel group, a transformer with a higher tap position will typically have a higher (LV side) no-load voltage than the other one with a lower tap position. These unequal no-load voltages (unequal tap positions) will cause a circulating current to flow through the parallel connected transformers. A transformer with higher no-load voltage (typically higher tap position) will produce circulating current, while a transformer with lower no-load voltage (typically lower tap position) will receive circulating current.

When load is connected on these two parallel transformers, the circulating current will remain the same, but now it will be superimposed on the load current in each transformer, i.e. for a transformer producing circulating current, this will be added to its load current, and for a transformer receiving circulating current, this will be subtracted from its load current.

Thus voltage control of parallel transformers with the circulating current method aims to minimize the circulating current while keeping the voltage at the target value.

In case of a parallel operation of transformers, the electric current carried by these transformers are inversely proportional to their internal impedance. Think of it as two parallel impedances in a simple circuit behind a voltage source, you will have equal currents through each impedance only if you have two identical impedances, in some cases as stated above, tapping could be a problem, the other one is the actual manufacturing tolerances which could diverge by almost 5-10%, if the transformers are manufactured by different suppliers or not within the same batch. So, the difference in current between the currents through these two impedances is basically the circulating current as it is not seen outside these parallel impedances.

The currents that are produces due to magnetic flux circulation in the core are called eddy currents and these eddy currents are responsible for core losses in transformer.
While the circulating currents are the zero sequence currents that may be produces due to following causes.
1- when there is three phase transformer the (3rd, 5th, 7th….) harmonic currents which are called zero sequence currents from all the three winding of three phase transformer add up and become considerable even in loaded conditions these currents have no path in Y/Y connection of transformer so a tertiary winding is provided co conduct these currents but in Y/d or D/y connection these currents circulate in delta winding.
2- Whenever there is unbalanced loading in transformer. In which with positive sequence, negative sequence and zero sequence currents are also produced which cause circulating currents.
3- When the transformer banks are used and the transformers have phase between them then circulating currents are produced between them, than transformers in the bank get loaded without being shearing the power to the load.

AQ: Why industrial induction motor star point not grounded?

In any electrical system, we limit the neutral grounding to 1 or 2 locations at the power source, eg, the star-points of generators or transformers. By keeping the grounded neutrals at the power source, earth leakage current will be flowing radially from the power source to the point of short-circuit at downstream. In this way the direction of earth fault current flow can be easily identified and the earth fault protection relays in the distribution system can easily be coordinated.

Grounding a motor star point will create an earth path for earth leakage current to flow through that motor’s star point. If there are 10 motors in a process plant and their star points are all grounded, there are 10 additional paths for earth leakage currents to flow through.
If all the motors’ star points are grounded in this way the earth fault current detections by the protection relays will be complicated and likely they will trip at the incorrect locations because earth fault currents are flowing in many directions toward multiple grounded neutral points.

Therefore the electrical consumers (ie the load, including the capacitor banks), even if they are star connected, are not to be grounded.

Grounding of neutral point is not being decided base on the presence of unbalance loads. It is decided for safety reason and for earth fault protection requirement. Unbalance 3-phase load will result in some current flowing through the neutral conductor but it doesn’t result in a (residual) current flowing through the neutral-ground connection.

Motor is a balanced 3-phase load, this I agree. However when the system supply voltage is unbalanced caused by unbalanced loads somewhere else or due to network conductors problem, the motor operating under unbalance voltage will result in unbalance current in the 3 windings. The same is true for the generator windings under that condition. The design engineer may then decide that individual machines should be fixed with negative phase sequence current protection.

Even if there is a neutral voltage shift in the induction motor, we should not ground the motor’s neutral point. If you ground it, it may create nuisance trip of earth fault protection relays (the motor’s EF relay, upstream EF relays, or the EF relay connected to transformer’s neutral-ground CT).

I am sure in reality, there is some neutral voltage shift in motor’s star point. However, there is no harm with that.

If you ground the star point, you still will not get rid of the unbalance current/voltage from the motor windings. There the negative sequence current is still present in the motor winding.
If you think an unbalance voltage supply is causing problem to the motors, you should solve the unbalance voltage problem elsewhere, not by grounding the motor’s star point.

AQ: Change transformer vector group

Transformer nameplate vector group is YNd1. However, the nature of connection on both its primary and secondary side is such that:
Generator phase A = Transformer phase c
Generator phase B = Transformer phase b
Generator phase C = Transformer phase a

Also, on transformer HV (secondary connected to grid),
Transformer phase A = Grid phase C
Transformer phase B = Grid phase B
Transformer phase C = Grid phase A

The questions are:

1. How does this affect the vector group (YNd1) of the transformer? Will it be changed to YNd11?
2. Will it make any difference as far as the vector group is concerned if instead of phase A and C, phase B and C were swapped on both ends of the transformer?
3. The transformer protection relay is configured for YNd1 group, and it is reading negative phase sequence current (ACB instead of ABC). Changing the vector group configuration will solve the problem?
4. Relay is used for differential protection (percentage differential) of the transformer.
Will this negative phase sequence affect normal operation of the transformer in any way?

1. How does this affect the vector group (YNd1) of the transformer? Will it be changed to YNd11?

Yes, the name plate vector group of a transformer is only valid for a standard phase rotation ABC. for a phase rotation ACB the apparent vector group will be YNd11.

2. Will it make any difference as far as the vector group is concerned if instead of phase A and C, phase B and C were swapped on both ends of the transformer?

No, by swapping any two phases the rotation becomes no standard and the apparent vector group will become YNd1

3. The transformer protection relay is configured for YNd1 group, and it is reading negative phase sequence current (ACB instead of ABC). Changing the vector group configuration will solve the problem?

I think the way the relay is configured at the moment will give you problems, if I’m correct you should be able to see differential current when the transformer is loaded, and it is likely to trip on the first through fault (can you confirm this). To resolve this issue you have two options.
i) Set the vector group to YNd11 in the relay, this will remove the differential current but will mean the relays see’s 100% NPS current and 0% PPS current, this may give you problem if you have any NPS elements enabled in the relay ( inter turn fault detection, directional elements etc)
ii)Set the vector group to YNd1 and the phase rotation setting to non standard ACB this will get rid of the NPS currents and the differential current, so this is probably the best solution.

4. Relay is used for differential protection (percentage differential) of the transformer.
Will this negative phase sequence affect normal operation of the transformer in any way?

No, there will be no problem with the transformer itself just the relay protecting it.

As i said previously if I’m understanding the problem correctly, you should be able to see differential current at the moment when the transformer is loaded, is this correct?

AQ: Variable frequency drive Constant Torque/Variable Torque

A typical variable torque application would be a centrifugal pump. A typical constant torque application would be a conveyor, and there are positive displacement pumps that are also constant torque. Have a talk with a mechanical engineer, get them to show you curves and explain.

DBR stands for Dynamic braking resistor. Regeneration will happen when the motor rotates a speed higher than the speed which corresponds to the frequency setpoint ie.. the rotor speed is more than the speed of the rotating magnetic field.
Regeneration feeds back energy to the drive which results in DC bus overvoltage. To prevent the drive from tripping due to DC bus overvoltage the DBRs are used. The regenerative energy is discharged in the resistor as heat.

Regenerative Breaking – we used to have VFD on a vehicle rolling road. So when the car is travelling faster than the VFD, the VFD generate back into the power supply – causing a break effect. If you had a large mass- large inertia that you want to stop quickly, you need to break the load- you can do that with regenerative breaking. Otherwise, disconnecting the variable frequency drive, will mean your load just freely rotates, and that can mean it will take 30 minute to come to a stop for a large inertia.

Active Front end- I first came across this term with ABB. It is all to do with how to mitigate harmonics from VFDs. You can use phase shift transformers, but with modern electronics, you can use a opposite phase current to counter act the harmonics generated from the VFD. So the overall impact on the network is small.
In active front end technology the rectifier is basically an inverter with IGBTs.
The main advantage are:
1) Low current THD <5 %
2) It is basically a four quadrant rectifier .Referring my last post please note that you will not require a DBR with AFE. The increase in voltage of DC Bus due to regeneration can be fed back to the input AC supply in the form of energy. So you don’t require a DBR.
3) AFE drives have very good immunity to input voltage fluctuations.

Just an advice. Please go through variable frequency drive literatures (available in plenty) to have a good understanding of the different VFD technologies.
Selection of VFD requires proper understanding of the VFDs and the overall electrical system. There are lots of marketing gimmicks in the world of VFD. Always be careful before selecting a VFD specially higher KW drives.

For large drives, you need to speak with supplier to configure your machine correctly. There are many options, but yes active front ends are available. But there are other solutions; ASI Robicon use a current driven VFD, so harmonics are lessened in the first place, so an active front end is not the right terminology. It is a different solution. I used a 10MW version of that type of ac drive. I think Siemens have bought the company since.

AQ: Pressure switch on three phase motor

Q: Is there a way of connecting a three phase pressure control switch on a three phase motor. Also is there a three phase float switch for a three phase submersible pump i know of a single phase switch.

A: The switch only needs to have a single contact since you use a three-phase motor controller to operate the motor. The switch is wired into the low voltage contactor coil circuit to turn the motor on and off.

You can connect a pressure switch for the purpose of motor control on its low level pressure or high level pressure. It is advisable to utilize pressure switch on the control cct, and connect the contactor coils through the auxiliary NC/NO contacts depending on whether you are interested on low pressure or high pressure control. It is not good practice to allow power cct through control ccts. You don’t need a 3 phase float switch to achieve controls of a 3phase submersible pump. You should be interested in the auxiliary terminals which will allow control flexibility for low level and upper level control. A single phase float switch will give you desired result. If you are controlling more than 1 no. 3phase motors located at different places from the same pressure signal, then your 3 phase pressure switch can be employed to control the different motors separately. In addition, some terminals could be used for indication/annunciation purposes. However, a single phase pressure switch can give you all the controls you need for a 3phase motor.

AQ: Charging Power transformer through lower rated grid auto Transformer

AQ: VFD Kinetic Buffering and Flying restart

Voltage Loss ride through with flying restart:
In this method, when the voltage sag causes the variable frequency drive to reach its undervoltage trip level, the VFD drive will shut off the inverter section and thus remove power from the motor instead of tripping. The motor will coast down during the duration of the sag and, as soon as the voltage recovers, the VFD will start into the still-spinning motor and ramp up to set speed. How much the motor speed will drop depends on the inertia of the load and the duration of the sag.
You have to configure the VFD for flying restart. During low input voltage the inverter section is cut off to maintain the DC bus voltage. If the voltage restores before the DC bus voltage goes below the tripping value, the inverter is again put on but the driven load speed has already reduced due to brief period of no voltage at the motor terminal. Flying restart feature enables the variable frequency drive to restart the Motor at the same speed at which the motor is operating thus preventing any high current. So it is basically catching a spinning motor. Without flying restart high current will be observed once the inverter section is put ON. Flying restart feature is also helpful if you want to restart a motor which is already spinning.

Kinetic backup
This option, which is also provided by some variable frequency drive manufacturers, uses the energy stored in the mechanical load to keep the DC bus voltage from dropping down to the trip level. This is accomplished by running the inverter section during a voltage sag at a frequency slightly below the motor frequency, causing the motor to act as a generator. Similar to the flying restart option, the motor speed will drop while it is acting as a generator, however the advantage is that the motor is never disconnected from the drive. This option works best for those high-inertia loads.
Kinetic buffering is a feature to prevent the variable frequency drive from tripping during voltage sags. If the VFD trips due to DC bus undervoltage there is no need for kinetic buffering.

AQ: Variable frequency drive key functions

Soft Starter, Auto Transformer, Electrolyte, series resistance – wound rotor- etc,). The starting factor of VFD drive is usually 1 up to 1.2 with respect to the rated load current while for Direct On line about 5-6.

Moreover and as you know the variable frequency drive can control the speed of the AC motors in accordance to the formula N=120f/P rpm
where f = the supply frequency and P = number of the Poles.
According to this formula, Motor Speed can be changed either by changing/control the frequency or by changing the number of Poles of the Motor by which step changed in the RPM will be given, while the former gives continuous variable speed as per application demand.

However, as per newly developed power Semi Conductor IGCT based on PWM VFD became the most smart, effective and efficient control device in Industries since is associated also with protective and monitoring means.

From my experience, I know that variable frequency drive plays around with the frequency which the motor operates. It starts at low speed and varies the frequency to attain maximum speed. This reduces the high starting torque usually experienced when motors are started on DOL, Star/Delta etc. When you are driving delicate materials through your conveyors or pumping liquid through pipes etc., VFD plays a useful role. It reduces hammering in pipes usually experienced when using DOL. In large hotel application, variable frequency drive could be used with pressure switches to regulate water flow and reduce hammering when guests are showing. The volume of water required will determine the speed at which the motor runs through VFD control. However, very large KW motors at high voltage level are usually started DOL due to the cost of ac drive but that is when one has enough (power) capacity otherwise it will impact on other users in the network.

AQ: Can a VFD reduces motor starting kick?

At zero speed the motor requires torque which is flux (voltage) and current (mostly reactive). Only a little bit of active current to compensate for the motor power losses.
Only the power losses need to be drawn from the grid at that time, which means a very small amount of current. It may produce 200% current on the motor and pull only 10% current from the grid.

Of course, as the motor is accelerating, the motor will require kW and the current pulled from the grid will increase accordingly, as the active power consumed by the motor is increasing.

Regarding the kick of torque on the motor, it is controlled by the maximum current ramp limit or through the speed reference as the ramp rate defines the current and the derivative of that rate is the current rate. For this reason, many large machines will be started using an S-Curve speed reference where the S part will adjust the torque (current) rate to avoid stressing the mechanical components, especially if there is mechanical backlash in the gears.

Actually the starting method depends on the type of motor itself SR or SQ type the voltage supply, the motor capacity and motor function, for the MV Motor a liquid or oil starter was the best solution used before.

In case the operation process required a change in the equipment speed the variable frequency drive (Air or water-cooling) based on the drive capacity is the optimum and reliable solution.

Definitely it reduces starting kick of the motor. Actually, the degree of starting kick of a motor is depending upon the starting speed of the motor. If you start your motor at low speed you will have a low starting kick but if started at high speed, you will have high starting kick. This is generally the condition for low and high kw motors. One factors of varying the speed of motors is by varying the frequency of the motors (from the formula N=120f/p) and VFD drive is use to vary the frequency, thus varying the speed of the motors. But if used for starting only, this is expensive as there is more cheaper way like using the Soft Starter or use a WRIM/Slip-ring motors with LRH/Resistor Starters or other. Normally, variable frequency drive is use on operation with speed reduction/varying requirements at required number of time or continuously.