Category: Blog

AQ: Is frequency inverter better than soft starter in motor control?

There are hundreds of applications for a frequency inverter. I use them on a pump to test pumps with voltages from 208-600VAC 3PH 50 and 60 HZ. You just have to size the frequency inverter to the largest 208 HP motor, so it can handle the current. Many people are installing them on pumps, fans and air compressors to get the energy savings of lowering the speed on the motor to maintain the pressure, temperature and flow. Frequency inverters also have the ability to ride through power dips, since the DC bus to store in a capacitor bank.

It is correct the frequency inverter will reduce the staring current of and induction Motor, but as all of you know that the motor have to drive a load the starting torque is related to starting current, also the main role of frequency inverter is to control the speed.
The starting current is related to the rotor conductor structure or classes because we can get direct starting currents within 1.5-4 times the full load depend on the squirrel cage design or construction.

The effect is, that at the reduced frequency during start, the full torque can still be developed at nominal current. As soon as the frequency hits the nominal slip frequency, the nominal torque will also be developed, at nominal full-load current. (The slip frequency is the nominal frequency multiplied by the full load slip percentage, i.e. around 2.5Hz for a 50Hz motor with a full load slip of 5%).

It really depends on the application. If you are only interested in starting current, then soft start is what you need.

AQ: Circuit Breakers tests

1- For small circuit breakers we can do the test of Magnetic protection behavior by using “Injection Current Apparatus”, and suppose the CB’s results were good, do you think it’s enough? I’m sure not, because by this apparatus we can inject the necessary current with a very low voltage value (5-15V), so, do you think that the arc will be the same if we have the same current but with “400V”?

2- The same question for “Short Circuit Tests”

Personally, I done the tests of many MCBs for different manufactures by using “Injection Current Apparatus”, and I saw the same tests in laboratory in France for the same MCBs by injection the same currents values with 230V or 400V depending on the CB, be sure, the results weren’t the same, we found some differences for Magnetic protection tests, and big differences for Short Circuit tests.

AQ: How to select a breaker?

Before breaker’s selecting for your electrical system, you need to calculate value of expected short circuit current at the place of breaker’s installation. Then you need to calculate value of heat pulse and 1s current (expected value of current during one second). After that you need to calculate power of breaker and finally, after all, you can select appropriate breaker. Values of characteristics of selected breaker need to be higher from calculated values of characteristics of your power system.

You can calculate operational current of breaker using this expression:

Inp=SnT/((sqrt(3))*Un)

After that, you need to calculate expected value of surge current:

kud=1+e(-0,01/Tae)
Iud=(sqrt(2))*kud*I’

After that, you need to calculate expected value of heat impulse:

A=(sqr(I0″))*Tae*(1-e(-2*ti/Tae))+(sqr(I’))*(ti+Td”)

And finally, you need to calculate 1s current (expected value of current during 1s):

I1s=sqrt(A/1s)

So, current of interruption of your breaker and power of interruption of your breaker are:

Ii=I’
Si=(sqrt(3))*Un*Ii

Additional expressions that you can use during your calculation:

I0″=Un/((sqrt(3))*Ze”);
I”=1,1*Un/((sqrt(3))*Ze”);
I’=1,15*Un/((sqrt(3))*Ze’);

where are:

ti-time of interruption
Inp-operational current of breaker
SnT-rated power of transformer
Un-rated voltage
kud-surge coefficient
Tae-time constant of aperiodic component of short circuit current
Iud-surge current
A-heat impulse
I0″-short circuit current in subtransient period (generators are in no-load conditions)
I’-short circuit current in transient period
Td”-time constant of subtransient component of short circuit current
I1s-current during one second
Ii=expected value of current of interruption of your breaker
Si=expected value of power of interruption of your breaker
Ze”-equivalent impedance of power system in the place of fault (subtransient period)
I”-short circuit current in subtransient period (generators are in full-load conditions)
I’-short circuit current in transient period
Ze’-equivalent impedanse of power system in the place of fault (transient period)

For a branch circuit feeding a single pump, you would generally size the circuit at 125% of the pump’s full-load amperage. If you’re not using a variable frequency drive or soft starter (which have built-in overload protection), you would use a Motor-circuit protector (MCP) breaker that has both thermal and magnetic trip capability. Sizing would be according the breaker manufacturer’s recommendations for a motor of a given horsepower, but not larger than would be required to protect the circuit conductors.

“The total load of an area” is much too ambiguous to answer. If you have lighting and receptacles, you’re going to need a different type of breaker than if you have motors or mixed types of load. There is no general approach. Circuit breaker types are very specific to the application.

Safety should not be taken lightly. Installing the wrong type of breaker could result in equipment damage and/or physical harm.

There are instantaneous breakers as well as time delay breakers. For time delay breaker, for example, you go 250% maximum of the rated current based upon the HP of a motor (look in the NEC), not on the nameplate label. The nameplate current value is for overload protection. Also try to size the breaker so that the conductors are protected.

As we kn

AQ: Motor line starting and ramp starting with VFD

Variable frequency drives are important power electronic devices. When we start an electric motor, we are increasing from 0 speed to full operating speed. A VFD ensures that the motor accelerates (increases its speed) to its full speed in a smooth manner, without causing much irregularities. In other words, VFDs make the motor accelerate uniformly.
VFDs are also easy to install and use. VFD drives are not only for starting motors (like the normal starters), but for easy speed control as well.

The difference between line starting a motor and ramp starting the motor with a variable frequency drive is that the motor/load does not pull the 6-7 times rated current of the motor, because the motor winding are not saturated with the full EMF produced to get the motor to synchronous speed it is ramped to it. If you are not trying to control the motors speed from process control then a soft start will serve the same purpose. The VFD drive main purpose is to control the V/F of the motor.

You will have to adjust the ramp time on the VFD or soft starter to over the force required to turn whatever the motor is turning, this can be accomplished with both devices. Soft starter is less expensive than variable frequency drive, thus it has limitations.

AQ: System configuration of grounding

There are different types of system configuration for grounding like TT,IT,TN-C etc. How do we decide which configuration is suitable for the particular inverter (string or central). What are the factors that help us to decide the configurations?

One of the main concerns in a system is to avoid large low impedance ground loops.
These are created by the return signal path connected to the chassis (metal work) at multiple points. The large current loop allows noise currents to radiate H fields and hence couple into other electronics. The antenna effect will be proportional to loop area.

Single point grounding of the return path to chassis prevents this. However single point grounding conflicts with good RF practice where you want to ground to chassis at the sending and receiving ends of a signal path. There is therefore no universal best practice.

In my field, spacecraft, the standard practice has all primary power electronics galvanically isolated from the spacecraft chassis. Individual modules must maintain the isolation with transformer coupled DC/DC converters. The centre tap of each PSU secondary output is then single point grounded to the module metalwork. We talk about primary side and secondary side electronics where only secondary side is grounded to the metalwork.

Anything powered directly from the primary bus must be isolated with a maximum capacitance to chassis of 50nF to avoid excess HF loop currents forming.

In general it depends on country specific law and standards required by Power Supply Operators. From design point of view it all depends on which point of grid you are going to connect and what type of inverter is used.

AQ: Lighting control panel to distribution board

There are a couple of construction differences which may be present, depending on the style of “lighting control panel”.

First, a distribution board typically has poly-phase branch breakers with the intention of feeding either other sub-panels or large loads — such as a motor with a motor controller.

A lighting control panel will have mostly single-pole breakers with phase-to-neutral branch circuits feeding lighting circuitry. There is the added possibility of having either ‘smart’ breakers or integral contactors included on the branch circuits to allow for a control means for area lighting beyond local control of an individual fixture/small group of fixtures, such as an office or conference room.

In general
1. The final branch circuits to be identified and rating load to be estimated.
2. Adequate utilization/diversity Factor to be applied if applicable (depends on the application).
3. To ensure the load balance over the 3 Phase as possible.
4. For Fluorescent light fixtures arrangement of the said fixtures with respect (RYB phases) is necessary to mitigate rendering/glaring and frequency affect.
5. Then size of cable from DB to LCP can be determined/sized, rating of the protective devices can be selected and type of CB(s) subject to type of lighting fixtures.
6. Verification of Voltage drop within the prescribed limit, otherwise select the next standard cable size.

A distribution board typically has poly-phase branch breakers with the intention of feeding either other sub-panels or large loads and lighting control panel (is also one type of distribution panel) will have mostly single-pole breakers with phase-to-neutral branch circuits feeding lighting circuitry.

AQ: The basis of rating a NGR in electrical system

NGR stands for Neutral Grounding Resistor. When an earth fault current occurs on a plant, assuming that there is no external device presented to limit the earth fault current, the magnitude of the earth fault current is limited only by the earth impedance presented between the point of fault (to earth) and the return path (typically a star point of a transformer). If the earth impedance is low (type of soil being one of the reason amongst others), the fault current magnitude can be significantly high, and if left unchecked could damage the primary equipment. It is therefore mandatory that the earth fault current be limited to a suitable value, which is typically the rated value of the plant as a thumb rule. Why use the rated value? Because the plant has been designed to carry the rated current continuously.

Let’s take an example: say you have a transformer 60MVA, 132/33kV Star-Delta transformer. It is required to calculate the value of NGR to be connected to the zig-zag transformer on the 33kV Delta. the value of the resistor required to limit the earth fault current to the transformer’s LV rated value is (33 x 33) / 60 = 18.15 Ohms.

(Earth Fault current limited to rated value = (60 x 1000) / (1.732 x 33) = 1050A) When you go to a supplier you might find he supplies only 20 ohms resistor (as you might not get the exact value that you have calculated theoretically). No problem, use the 20 ohms and calculate what your new value of earth fault current would be (33 x 1000 / (1.732 x 20) = 952.6A, which is less than the transformer’s rated LV current. So you’re safe. This is how I would go about. In fact I would go a step further and introduce a safety factor of 20% i.e. I’ll bump up the value of the resistor from 20 ohms by an extra 20% and buy a resistor/ NGR of 1.2 x 20 = 24 ohms. So I am 100% sure that the earth fault current is way below the rated value and my transformer will be safe, even if the fault current goes undetected for any unforeseen reason say my earth fault protection has failed to pick up.

Make sure however that the earth fault setting that you choose is sensitive enough to pick up for the earth fault current calculated. I would generally put two relays a 64 or REF designed to pick up and operate instantly backed by a 51N with a sensitive setting but with a delay of a couple of seconds to pick up in case the 64 has failed to pick up.

So that’s it. I have described how I would go about calculating the earth fault current, selection of NGR value and how I would protect it.
Protection and related devices aiding protection don’t come cheap. Also I assume by your comment “this method is the most expensive option available since the cost of the transformer shall be astronomical”, you are referring to the Zig-Zag transformer and not the actual 132/33kV Star-Delta power transformer, under question.

I have taken a very generic example and tried to focus on how to arrive at a suitable value of an NGR, assuming an Star HV and Delta LV. My aim being to calculate how I could limit the fault current on the Delta LV. Being a Delta winding, I have to use a Zig-Zag transformer, for providing a low zero sequence path for the flow of earth fault current. It is really the Zig-Zag trafo. that bumps up the cost.

Note: If the above transformer is one of a kind, i.e. this is the only transformer in an isolated network, then I simply disregard the Zig-Zag transformer + NGR method and use the 3 PT broken delta method for 3Vo detection to drive a 59N. My cost here would be very low.

If the transformer is a Star-Star type with HV start solidly grounded, and LV star impedance (NGR) grounded, then I don’t need a Zig-Zag trafo. on the LV side. My cost is purely for the NGR alone.(Of course this transformer will have a Delta tertiary which may need it’s own protection depending on the whether one plans to load the tertiary or not. We could di

AQ: Difference between PLC and DDC system

PLC is defined as Programmable Logic Controller. It is a hardware, Includes processor, I/P & O/P Modules, Counters, Function Blocks, Timers,,, etc. The I/Os are either Analogue or Digitals or both. PLC can be configured to suit the application and to programmed in a logic manner by using one of the programing language such as Statement List, Ladder Diagram,, etc Interaction in real time between inputs and the resultant of the outputs through the program logic – PID – gives the entire Control System. While the Digital Control System I believe it is Software/ System that uses only Digital Signals for control and PLC/PC/Server/Central Unit may constitutes an Integral part of this system.

AQ: Power Transformer power losses

Power losses of ferromagnetic core depend from voltage and frequency. In case where is no-load secondary winding, power transformer has a power losses in primary winding (active and reactive power losses) which are very small, due to low current of primary winding (less than 1% of rated current) and power losses of ferromagnetic core (active and reactive power losses) which are the highest in case of rated voltage between ends of primary winding…

Of course, we can give voltage between the ends of primary winding of power transformer (voltage who is higher from rated voltage), but we need include some limits before that:

1. if we increase voltage in the primary winding of power transformer (voltage who is higher from rated voltage), we need to set down frequency, otherwise ferromagnetic core of power transformer will come in area of saturation, where are losses to high, which has a consequence warming of ferromagnetic core of power transformer and finally, has a consequence own damage,

2. if we increase voltage in the primary winding of power transformer (voltage who is higher from rated voltage), also intensity of magnetic field and magnetic induction will rise until “knee point voltage”: after that point, we can’t anymore increase magnetic induction, because ferromagnetic core is in area of saturation…

In that case, current of primary winding of power transformer is just limited by impedance of primary winding… By other side, in aspect of magnetising current, active component of this current is limited by resistance of ferromagnetic core, while is reactive component of this current limited by reactance of ferromagnetic core.

There is a finite amount of energy or power that can be handled by various ferromagnetic materials used for core material. Current increases greatly with relatively small voltage increases when you are over the knee of the magnetization curve characterized by the hysteresis loop. Nickel/steel mix materials saturate at lower flux densities than silicon steel materials. 50ni/50fe materials saturate at about 12kG; 80Ni/20Fe as low as 6kG. Vanadium Permendur material saturates at levels as high as 22kGauss- Nano-crystallines- 12.5kG (type), Ferrites -typically over 4kG at room, decreasing as temperature rises. What causes saturation?: Exceeding material limits.

AQ: What is ANSYS software?

This is a finite element analysis tool for various applications.
In power we get the voltage (stress) distribution in equipment like cables, bends in cables etc including stator winding of generators.

Once you go deep into it the applications become more apparent.  In mechanical engineering using FEM you can identify the stresses in each member of the structure and so on.

I believe ANSYS, Abacus, Nashtran etcare extensively used for detailed analysis of stresses including electrical stresses. Some of the above offer introductory courses on line.
One needs extensive and considerable insight into partial differential equations and advanced mathematics.