Category: Blog

AQ: Pressure switch on three phase motor

Q: Is there a way of connecting a three phase pressure control switch on a three phase motor. Also is there a three phase float switch for a three phase submersible pump i know of a single phase switch.

A: The switch only needs to have a single contact since you use a three-phase motor controller to operate the motor. The switch is wired into the low voltage contactor coil circuit to turn the motor on and off.

You can connect a pressure switch for the purpose of motor control on its low level pressure or high level pressure. It is advisable to utilize pressure switch on the control cct, and connect the contactor coils through the auxiliary NC/NO contacts depending on whether you are interested on low pressure or high pressure control. It is not good practice to allow power cct through control ccts. You don’t need a 3 phase float switch to achieve controls of a 3phase submersible pump. You should be interested in the auxiliary terminals which will allow control flexibility for low level and upper level control. A single phase float switch will give you desired result. If you are controlling more than 1 no. 3phase motors located at different places from the same pressure signal, then your 3 phase pressure switch can be employed to control the different motors separately. In addition, some terminals could be used for indication/annunciation purposes. However, a single phase pressure switch can give you all the controls you need for a 3phase motor.

AQ: “Hissing sound” in SF 6 Gas insulated HV Switch Gear

This could be internal corona discharge. The switchgear should be de-energized and closely examined. That means pump out the SF6 and take it apart. Examine all insulating components.

Especially if the sound can be localized to portions of the switchgear which do not have bushings for connection to overhead lines. Even if the sound is in the area of air bushings, deenergizing will allow more in-depth inspection and addressing any sharp edges or cracked insulators, etc.

Take this pieces of equipment out of service immediately, perform a “hi-pot” or high potential test on the various elements of the switchgear and attempt to locate the area that is “leaking” to ground (or between phases). Inspect closely for indications of tracking on insulators from corona discharge and replace any compromised components. After component replacement, installation of new SF6 gas and other repairs, re-run the Hi-Pot test to confirm that the switchgear is able to withstand voltages at least 50% greater than the name-plate rating. Of course all of this advice is worthless if the unit has already failed.

Remember that a Hi-pot is actually a destructive test. It challenges the insulation to the point of breakdown. Check the vendor recommendations before you Hi-pot equipment that has been in-service.

AQ: Variable frequency drive Constant Torque/Variable Torque

A typical variable torque application would be a centrifugal pump. A typical constant torque application would be a conveyor, and there are positive displacement pumps that are also constant torque. Have a talk with a mechanical engineer, get them to show you curves and explain.

DBR stands for Dynamic braking resistor. Regeneration will happen when the motor rotates a speed higher than the speed which corresponds to the frequency setpoint ie.. the rotor speed is more than the speed of the rotating magnetic field.
Regeneration feeds back energy to the drive which results in DC bus overvoltage. To prevent the drive from tripping due to DC bus overvoltage the DBRs are used. The regenerative energy is discharged in the resistor as heat.

Regenerative Breaking – we used to have VFD on a vehicle rolling road. So when the car is travelling faster than the VFD, the VFD generate back into the power supply – causing a break effect. If you had a large mass- large inertia that you want to stop quickly, you need to break the load- you can do that with regenerative breaking. Otherwise, disconnecting the variable frequency drive, will mean your load just freely rotates, and that can mean it will take 30 minute to come to a stop for a large inertia.

Active Front end- I first came across this term with ABB. It is all to do with how to mitigate harmonics from VFDs. You can use phase shift transformers, but with modern electronics, you can use a opposite phase current to counter act the harmonics generated from the VFD. So the overall impact on the network is small.
In active front end technology the rectifier is basically an inverter with IGBTs.
The main advantage are:
1) Low current THD <5 %
2) It is basically a four quadrant rectifier .Referring my last post please note that you will not require a DBR with AFE. The increase in voltage of DC Bus due to regeneration can be fed back to the input AC supply in the form of energy. So you don’t require a DBR.
3) AFE drives have very good immunity to input voltage fluctuations.

Just an advice. Please go through variable frequency drive literatures (available in plenty) to have a good understanding of the different VFD technologies.
Selection of VFD requires proper understanding of the VFDs and the overall electrical system. There are lots of marketing gimmicks in the world of VFD. Always be careful before selecting a VFD specially higher KW drives.

For large drives, you need to speak with supplier to configure your machine correctly. There are many options, but yes active front ends are available. But there are other solutions; ASI Robicon use a current driven VFD, so harmonics are lessened in the first place, so an active front end is not the right terminology. It is a different solution. I used a 10MW version of that type of ac drive. I think Siemens have bought the company since.

AQ: Motor power cable – bigger or smaller?

When a choosing a power cable for a motor, we prefer using one larger diameter cable than two smaller diameter cables in parallel, although it would cost less to do so. Why?

1. Conductors/Cables/Feeders in parallel connection generally are not recommended unless there is no option, therefore it can be adopted under the following conditions:
i. Cables are of the same material and cross section area.
ii. Are of the same route and length.
iii. The sum of the current carring capacity of the parallel circuits after applying all necessary applicable correction factors should be greater than the nominal regulated current of the protective device.
iv. The current carrying capacity (before derating) shall be not less than 300A (according to the local authority/Service provider requirement/regulation).
v. Capability of addressing the Thermal & electrodynamics constraints in proper way.

2. Some designs call for parallel connection so as to:
i. Overcome the voltage drop.
ii. Avoid the difficulties of installing big size cables (bending, pulling) due corridor limitation,etc.
iii. Meet the Power demand.
iv. Mitigate the cost (Costwise).

3. For electrical Motors, two connections are normally required. One from MDB to Motor CP and other from CP to the Motor.
By virtue of the requirement of Delta/star starter, two cables are required (Mandatory) between CP & motor (one will be dead just after changing to delta connection).
While the connection from the MDB to CP will be one, sized according to the Motor rating.

However, Parallel connection of Feeders need an expert engineer(s) to meet the requirement since Short Circuit fault protection for parallel circuits require further evaluation from the Engineer that the impact of the short circuit current within the parallel section will have severe fault due to fault current path that can occur in addition subtransient contribution of the downstream system.

AQ: Designing Gate drivers for IGBT

Q:
When designing gate drivers for IGBT’s, how reliable are the gate driver IC’s ? Now there are a lot of gate driver IC’s available in the market. For example i am using the Hybrid IC M57962L for driving IGBT’s for 3 phase inverter application. The peak output current of this Hybrid IC is 5A and it’s written in data sheet that it can be used for driving IGBT’s up to 200A, 1200V and many features in it.

For an initial design and for lower power rating the configuration is working fine. But, before going for higher power rating, i want to make sure about the reliability of Gate driver IC’s in general.
Is it advisable to design gate drivers using commercially available IC’s or go for a design which includes a gate drive transformer . What are the issues that may arise when using driver IC’s.

A:
I’ve seen and developed designs using these hybrid gate drives quite successfully with long term field reliability in applications requiring from 800 V to 1.25 kV voltage isolation in power conversion products for the semiconductor capital equipment market. Powerex offers various different isolated drivers like the M57962L – my personal favorite is the VLA-502 which also contains the isolated DC/DC converter used to power the isolated gate drive electronics.

There are only two problems that I remember in the last 10 years with these types of commercial drivers – and both problems, if I remember correctly were with the stand alone DC/DC converter intended to be used with the stand alone isolated driver. One problem was a voltage isolation issue from primary to secondary inside the DC/DC switcher. Powerex acknowledged the problem, and upgraded the design. I simply do not recall the part numbers involved. The second problem was with regard to how the isolated VEE rail was established – the monopolar output of the DC/DC converter was offset negative, and ground referenced with a zener diode – and when the IGBT gate would become active at high frequency (25 kHz for that particular application), the gate charge was high enough to sag the negative supply rail against the zener shunt.

Bottom line: Use a good isolated DC/DC converter, with solid VCC and VEE regulated outputs. The isolated drivers themselves are solid in my experience – a nice, simple solution with typically better rise and fall times than gate drive transformers. They also have the added benefit of being capable of holding positive or negative DC bias if the application requires it.

AQ: Overcurrent protection of generators

Overcurrent protection uses as back-up protection for protection generators from faults between two windings of stator (two phases of stator). Setting of overcurrent protection depends from two settings: current setting of relay protection and time setting of relay protection.

Current setting of relay protection represents minimal value of current under which relay protection will send signal to breaker to act and this value is higher from value of rated current in generator (higher from maximum allowed value of current in generator).

Time setting of relay protection represents time after that relay need to send signal to breaker to break fault. Of course, when we talk about time setting of relay protection, we need to have on mind time delay. Time delay represents time during other protections need to act before overcurrent protection acts in case where is overcurrent back-up protection for protection of generator.

Then there is voltage restrained time overcurrent protection (ANSI 51V) which is commonly applied on generators. The pickup setting of these relays reduces (becomes more sensitive) when the applied voltage reduces. It is supposed to aid in sensing faults that are electrically close to the generator terminals as there is insufficient fault impedance to maintain the voltage at the generator. It is especially useful in tripping out faults that have persisted long enough for the generator fault decrement curve to get to the portion where the synchronous reactance is the characteristic impedance. When this happens the fault current will be at the same levels as normal load currents and increased sensitivity is needed.

AQ: Harmonic current

I hate to call them harmonic currents. The do submit to Fourier analysis, but you are probably dealing with AC to DC power supplies. If you look at the current pulses, you will see that each pulse is about 1-2 milliseconds in duration in alternating directions. If you sum these all in the neutral there is the appearance of what looks like 180 Hertz in the neutral. If you use different sized power supplies on each phase, you can see that it is just the addition of the three phases. So the neutral current when you have non power factor corrected power supplies is the sum of the three phases. Unless the current waveforms overlap, there is no cancellation of current in the neutral, hence the neutral current is the sum of the phase currents. The reasoning behind this is the rectifier diodes in the front of the power supply and the DC storage capacitors size relative to the DC load on the capacitor. The general rule of thumb is that the capacitor is about 800 to 1000 microfarads per amp of current in the capacitor.

Realize that the extra heating in the three phase delta-wye transformers is due to the extra circulating current in the primary delta causing excessive heating of the primary conductor. The world calls transformers designed to deal with this “K” factor transformers. Let the world of electrical engineers bury all this simple stuff behind the maze of Fourier analysis. Change the incoming voltage slightly and your Fourier analysis is garbage. The issue here is switches and storage caps— not some magical mathematical garbage.

By the way if someone wanted to use the wire sizing guidelines of the National Electrical Code in the US to size wire for 100% power supply load, the neutral wire would be 8 gauge sizes larger than the phase conductors. People need to start demanding PFC power supplies. Fix a switching problem with switches.

AQ: Bushing insulation testing

In bushing insulation test there are three major current elements which any of those could affect the test result. These current elements are Capacitive current

AQ: Neutral current is less than phase current?

In a balanced 3-phase system with pure sine waves, the neutral current is zero, ideally.
If there is phase imbalance, it shows up in the neutral, so check for imbalance.

The other major cause of high neutral currents is full wave rectification, where the current of each phase is flowing only at its peak voltage. In this case, the neutral current can be as high as three times the phase currents, theoretically.

If you can see the frequency of the neutral current, line frequency currents indicate imbalance. Current due to full wave rectification is high in third harmonics, so it may show mostly 3 x line frequency, or be a ratty square wave at 3 x line frequency.

High neutral currents, and some resulting fires, are largely responsible for the adoption of power factor correction requirements. If your loads are balanced and pfc corrected, you should not have neutral currents.

The neutral current (In) is summation of the phase currents. And obviously, the three phases are decoupled now; and not loading Y makes Iy=0.
So In = Ir + Ib (vectorial sum). Now depending on the amount of loading, nature of loads and their respective power factors, a variety of possibilities (for neutral current magnitude and phase) arise; which may include the case of In being higher.
The statement “neutral current is usually less than phase currents” is naive and not universal.

Nonlinear loads (i.e. rectifiers as Ed mentioned above) draw significant harmonic current. In many cases the current Total Harmonic Distortion (THD) is >100%. In a 3-phase, 4-wire system, the triplen harmonic currents (3, 9, 15, 21…) sum in the neutral wire because they are all in-phase. This is why the neutral current can be much higher than the phase currents even on an otherwise balanced load application. If you can put a current probe on the neutral and look at the waveform – you can see how much fundamental vs. harmonic current there is.

AQ: Torque ripple information from low resolution speed signal

Q:
I am trying to develop a controller for switched reluctance motor which minimizes torque ripple. My design is acquiring torque ripple information from speed signal. In simulation a high pass filter for speed gives me good ripple information. But in experiments I am using a 500 PPR optical absolute encoder to get the position and then calculate the speed using microcontroller (dspace) capture module. But the filtered speed signal does not provide much ripple information. Can you suggest any method to extract ripple information from low resolution speed signal.

A:
1. In simulation, do you consider motor inertia? Inertia filters out torque ripple’s impact on speed, resulting in a smooth speed signal. 2. Generally speaking, a low resolution position sensor produces speed signal of more noise, especially at low speed. I would expect more noise out of your high pass filter.

An encoder generally does not specify an accuracy for the A to A! channel or B to B! channel or it is so broad a spec that it is useless. If you have the ability to trigger a clock on A and B to determine the period between A and B channels the difference between successive reads will give you a good indication of your ripple.

In some cases of motor – encoder installations the mechanical alignment of the encoder to the exact center of motor shaft can cause misalignment noise to occur in the resolved speed signal. In theory the ripple signal could provide useful information however in practice there are too many other influences. Even the shaftless encoder mounting has some of these difficulties.