Category: Blog

AQ: AC induction motor constant power

An AC induction motor is supposed to be a constant power motor, which implies it draws more current on low voltage. Consider a motor running a constant torque load at a particular speed. Suppose now the voltage is reduced, which should cause it to settle down at a lower speed supplying the same torque as per the new torque speed characteristic. If we consider the electrical side, higher slip will cause more current to be drawn that too at higher pf, which should maintain the power justifying the above theory. But on the mechanical side the new output power Torque x speed is supposed to be lesser now as speed is less now. Is it this contradiction?

The following guidelines prove there is no contradiction since your question about Motor under running condition:

1. Torque / Slip characteristic for Induction Motor has three Zones.
a)- Starting Torque @ S=1, selection of this torque depends on the application. The starting should be greater the system torque at time of starting.
b)- Unstable Zone during which acceleration and torque development took place. This zone up to the Max. Torque can be developed.
In this regard, it may be necessary to mention that the seventh harmonics to be considered otherwise crawling / clogging may occur.
c)- Normal Operating Zone. NOZ about which your query raised. NOZ ranged as ” 0 < S< 1″ ie up to the Max. Torque. It is worth mentioning that Max. torque always remain the same regardless to its location of occurrence.

2. The torque is directly proportional to rotor resistance “r2” & varies with slip “S”. hence increase of rotor resistance is the most practical method of changing the torque (ie wound rotor Slip ring Motors). Moreover, the Max torque achieved when rotor Resistance “r2” = The Stator impedance, At starting S=1.

3. Accordingly, the ration r2/x2 gives the location of the max. Torque w.r.t Slip (if the max. torque is required at starting (S=!) then r2/x2 should equal “1”.

4. load being constant. Mechanical output = Electrical input – losses.

5. Tmax Propotional to Sq(v). decrease of 50% of the supply voltage generate a reduction of 20% in the max. running Torque (zone c) , increase in slip and also Full load current and temperature raise increase while the full load speed decrease. the status of the above parameters will be opposite if the voltage increases by 10%.

Based on the above, in all cases since the Motor is running within the operating range will be no issue unless the supply voltage falls behind the above limits (-50%, +110%). Accordingly, variable frequency drives provided by under/Over voltage protection relay to avoid damage to insulation due to Heat/temperature rise that will be generated due to excessive current intend to composite load.

AQ: How to select a drive between motor and machine?

We should select a drive (direct/flexible, chain, flat/vee/ribbed belt, gearbox, soft start). The motor/starter/drive characteristics should match that of the load. Design and factors to be considered in selection.

AQ: VFD replace mechanical gearbox to drive the load

Can an AC drive to replace the mechanical gearbox that used to decrease motor speed in conveyor application i.e to use a motor that will drive the load directly throw a coupling, belt or chain, without gearbox, motor rated up to 18.5 kw.

Theoretical is true as far the speed variation is concerned. Practically is not recommended for your application if the conveyor is required to be used with constant speed, on the other hand the gearbox also used for Torque purposes.

For light conveyors used on packing lines on which rate of production varies in accordance to some industrial parameters (Automation & PID control), direct coupled motor controlled by variable frequency drive may be feasible.

VFD is expensive (capital & running cost) its selectivity should be done carefully among the other available options.

By using a variable frequency drive we can change the speed of an AC Motor, and working for any time on any choosing speed, even in some case we can exceed the speed more than the normal one if the motor can withstand it. Noting that:
1- We should be careful when choosing the type of AC drive that should ne normally done according on the application “Conveyor, Fan, Pump, Compressor, ext ” to determine the torque’s level at running time.
2- In some special case when the motor runs at too low speed comparing by his normal one, maybe we need a forcing cooling for that motor.
3- Each VFD has a value of the Short Circuit’s level that can be withstanded, so, we should be careful of that point.

AQ: MCCB burn out in connection with 22kW motor

125A rated MCCB is connected with 22KW motor. The motor runs in normal condition, no overload. But the contacts of MCCB is burnt out. Why?

When the transition between wye and delta takes place, be very sure that that the mechanical interlocks on the contractors are properly adjusted. If one doesn’t completely open before the other closes, you have a line to line fault. That will eventually take out the upstream breaker. Be careful, this is a very dangerous starter. I have been done this road many times.

“Star/delta switching” is delicate maneuver.
* The engine has almost no force to push something more than itself at startup. When it’s time for mode switching start to delta, may not happen too quickly. The arcs that occurs when the star contactor switch off, needs a few milliseconds (minimum 20 ms). Typical of an MCCB to go off is 50 ms and on is 20 ms.
* If the load is too high during startup, the engine will get overloaded when switching from star to delta and arcs can become very powerful and devastate even the strongest Components. In case the engine does not start at idle, the start method is directly harmful to both motor and power grids. Instead of a soft and comfortable start, we get instead two powerful surges. (In that case it may be even better with only one MCCB).Should this be the case, there are two solutions: Make sure the engine starts without load or replace the Star/Delta switch to a soft starter.
3: Next step is a frequency converter but then it’s about something completely different.

AQ: How to find the KA rating of Circuit breakers?

Before breaker’s selecting for your electrical system, you need to calculate value of expected short circuit current at the place of breaker’s installation. Then you need to calculate value of heat pulse and 1s current (expected value of current during one second). After that you need to calculate power of breaker and finally, after all, you can select appropriate breaker. Values of characteristics of selected breaker need to be higher from calculated values of characteristics of your power system.

1. The fault level of the upstream NW (Source) to be known, normally 500MVA or 250MVA.
2. Upstream impedance (reactance and resistor, capacitor to be ignored for Short cct calculation) can be determined accordingly.
3. The LV System starting from the secondary of the distribution transformer.
4. Short circuit percentage voltage for Transformer is known (normally 4% for 1000kVA and 6% for 1500 kVA) and hence reactance and impedance can also determined.
5. Impedance of Cables also can be determined from manufacturer TD sheet.
6. Subtotal impedance to be determined by conventional way (Submit if are in series/ (Z1+Z2+….Zn)/(Z1XZ2X…Zn) if are in parallel.
7. divide voltage by the Impedance up to the required location, will give you the fault current at that location.
8. Determine Maximum and minimum fault current. By the former you can decide the breaking capacity of CB and by the later the setting can be achieved.
9. verify the thermal constraints of the conductors(cables). ie

I²t ≤ S²K² , I short cct current, t time( < 5 s valid), K cable material Factor and S cable section area.
I²t Known as let through energy. accordingly breaking capacity of CB should be > than Circuit Maximum fault.

The MCB, MCCB, & ACB are all Low Voltage Circuit Breakers, where SF6 is a Non-active gaze used in Medium Voltage Circuit Breakers.

Now, to determine the value of Breaking Capacity of any circuit breaker, we should, by calculation, the Maximum Short Circuit Current Value ” Isc3max ” at the installation point of that circuit breaker, where we can calculate it by assuming a ” Short Circuit between 3 phases at that point “, then after knowing ” Isc3max ” we can determine the Breaking Capacity value that should be ” equal or bigger than Isc3max “.

Further:
1- The value ” 250 … 500MVA ” is the short circuit power at Medium voltage side for up to 36kV.
2- About the Short Circuit Voltage percentage value:  we called ” Ucc or Usc ” and the value is ” 4& for up to 630kVA transformers “, and ” 6% for up to 2500kVA transformers “, but in all case, we can read it at the transformer’s name plate.
3- Sorry Mr. Omar, we can’t do, you mentioned, the sum of all Z, as these values aren’t on the same vector, so, we should first calculate ” R & X ” for each component, then do the sum of all R ” R total ” and all X ” X total “, then calculate the ” Z total “.
4- By knowing the Minimum Short Circuit Current value ” Iscmin “, we use it to determine the value of “Setting Value” of “Magnetic Protection or Short-time Protection”.

AQ: Soft start motor tripped in fuel oil suction and discharge

First of all check all the component i.e.CB, CT, Heat Element, and the O/L setting then megger the motor to be shore that there is no problem with the motor winding insulation.
After that let the mechanical check the vibration analyses during the start-up also measure the startup currant of the motor and diffidently you will find where is the problem.
It could be a relay setting; or problem in the insulation; or even a problem in the motor itself.

On the other hand, check the motor on No Load condition and tune it to the Soft starter before coupling it to the pump.
Auto Tuning feature is generally inbuilt to Advanced soft starters.
If the No load startup of the motor is perfect, 2 causes arise:
1) Improper design.
2) Viscosity _ this can be tackled if you can make some temporary arrangement for pre-heating to confirm if this is the culprit.

As using soft starter could result in reducing torque of the motor. Soft starter normally reduces starting current by reducing starting voltage. However, decreasing voltage will lead to starting toque reduction. Hence, the motor may take longer time, especially when driving high-inertia load, with somewhat high current until it reach its full speed. Using an inverter will help you get full starting torque or even boost up it to 150-200% while keeping starting current at 150-200% of full load. Installation of heat tracing might also help and economic.

Assuming it is an electrical problem. On a motor of this size it has separate overload protection from the ground fault and short circuit protection. There are tolerance levels for motor that you may not be within. However a megger will not answer all the possibilities with motors unless you are ready to perform polarization index test etc….A power analyzer will allow you to see the operation in real world application. Assuming you have confirmed this is an electrical problem your next step would be to use a power analyser. You should be able to confirm by the signature and different placements of the analyzer the problem. Analyzer should be around all three phases.

AQ: Popularization of SPICE

I am currently writing a bullet point history of the popularization of SPICE in the engineering community. The emphasis is on the path SPICE has taken to arrive on the most engineering desktops. Because of this emphasis, my history begins with the original Berkeley SPICE variants, continues onto PSpice (its limited, but free student version made SPICE ubiquitous) and culminates with LTspice (because, at over three million downloads, it has reached many more users than all other SPICE variants combined).

I have contacted Dr. Laurence Nagel (the father of Berkeley SPICE) and Mike Engelhardt (LTspice) in order to verify the accuracy of the historical account (haven’t had a chance to fold in Dr. Nagel’s corrections yet), but I am lacking solid information about the beginnings of PSpice (I don’t even know who the technical founders of MicroSim were). Ian Wilson was an early technical V.P. Also, I am not sure what the PSpice acronym means. (Seems to me that it started out as uPspice?)

Here is what I have recently found about PSpice (more info appreciated):

User’s Guide to PSpice, Version 4.05, January 1991
From Chapter 1: INTRODUCTION, Section 1.1 Overview, starting with paragraph 2 (page 3):

“PSpice is a member of the SPICE family of circuit simulators. The programs in this family come from the SPICE2 circuit simulation program developed at the University of California at Berkeley during the early 1970’s. The algorithms of PSICE2 were considerably more powerful and faster than their predecessors. The generality and speed of SPICE2 led to its becoming the de facto standard for analog circuit simulation. PSpice uses the same numeric algorithms as SPICE2 and also conforms to the SPICE2 format for input and output files. For more information on SPICE2, see the references listed in section 13.2.1.4 (page 427, especially the thesis by Laurence Nagel.

“PSpice, the first SPICE-based simulator available on the IBM-PC, started being delivered in January of 1984.

“Convergence and performance is what sets PSpice apart from all the other ‘alphabet’ SPICEs. Many SPICE programs became available on the IBM-PC around mid-1985, after Microsoft released their FORTRAN complier version 3.0. For the most part, these SPICEs are little modified from the U.C. Berkeley code. Using benchmark circuits, we find that PSpice runs anywhere from 1.3 to 30 times faster than our imitators. In the area of convergence, PSpice has a two-year lead in improving convergence and a customer base that is larger than all of the other SPICE vendors combined (including those SPICEs offered for workstations and mainframes). This larger customer base provides more feedback, sooner, than any other SPICE program is likely to receive.”

From Chapter 1: INTRODUCTION, Section 1.4 Standard Features, last paragraph (page 7):

“PSpice, version 3.00 (Dec. 1986) and later, is a complete re-write of the simulator into the ‘C’ pro-gramming language. It is not a version of SPICE3, from U.C. Berkeley, which is also written in ‘C’. MicroSim has overhauled the data structures and code, however the analog simulation algorithms are similar and the numeric results are consistent with SPICE2 and SPICE3. Having the simulator re-written in ‘C’ allows faster development, allowing our team to reliably modify and extend the simulator in sev-eral directions at once.”

From the January 1987 Newsletter: PSpice went from version 2.06 (Fortran) to version 3.00 (C). Speed increased by 20%. PSpice 3.01 (Dec 86) introduced the non-linear Jiles and Atherton core model.

From the April 1987 Newsletter: PSpice 3.03 (Apr 87) introduced ideal switches.

From the July 1991 Newsletter: PSpice announced Schematics at the June 1991 Design Automation Conference. (Became available when PSpice 5.0 shipped in July 91?)

Solving Differential Equations with Mic

AQ: Improve PF of pumping motor with soft starter controlled

I have 3 pumping motors of 1750 kw 6.6kv, with soft starter they are maintaining a pf of .96-.97. Now I want to install HT capacitors to use these motors in d.o.l, can I take the pf to .99 by using this?

If you are using soft starters now, do not take them out. These are really large motors and starting them across the line is not a good idea. The utility serving you should have designed their service based on you having soft starters for these motors. They probably also have a stipulation stating that you cannot start them all at the same time. Starting one or more them across the line may cause the utility’s transformer fuses to fail. Even if it doesn’t, the flicker may cause other processes in your facility to trip. Especially drives or undervoltage relays in MCC’s.

The only reason to install caps at this point would be to correct for power factor. Since your pf is .96 it will take years if not decades to get a return on your investment (ROI). My utility does not charge a pf penalty until you drop below .90. And even then, it is usually not worth installing a cap bank unless you are under .85 and correct to >.95. Most customers require a 3 to 5 year ROI and you will never get that. We always recommend designing for a .95 pf to leave some “headroom”. So, your existing design sounds like it is correct. Your company may also have a “kva rate” instead of a “kw rate” with the utility. Check with your utility marketing rep to verify what type rate you are own and to help you evaluate your ROI.

Also, when you install a capacitor bank you have to make sure that you do not hit a resonant harmonic frequency. You will have to get the utility involved to give you the short circuit data at the PCC (point of common coupling). If the calculated harmonic resonant point is near the 3,5,7,11 or 13 harmonic, you will need a harmonic filter installed in conjunction with the capacitor bank. That means more money and a longer ROI.

AQ: Simulator history

Power electronics has always provided a special challenge for simulation. As Hamish mentioned above, one of the problems encountered is inductor cutsets, and capacitor loops that lead to numerical instability in the simulation matrices.

In the 80s, Spice ran so slowly that is was not an option unless you wanted to wait hours or days for results, and frequently it failed to converge anyway. It was never intended to handle the large swings of power circuits, and coupled with the numerical problems above, was just not a feasible approach.

Ideal-switch simulations were used with other software to get rid of many of the nonlinearities of devices that slowed simulation down, but Spice really hated ideal switches as it would try to converge on the infinite slope edges.

Three universities started writing specialized software for converter simulation to address this shortcomings of Spice. Virginia Tech had COSMIR, which I helped write with a grad student, Duke University had the program which later became Simplis, and the University of Lowell had their program, the name of which I don’t recall (anyone remember?).

All of these programs started before Windows came along, and they were fast and efficient. With windows, the programming overhead to maintain programs like these moved beyond the scope of what university research groups in power electronics could handle. Only the Duke program survived, with Ron Wong leading the effort at a private company. The achievements of Simplis are remarkable, but it is a massive effort to keep this program going for a relatively small marketplace (power supply companies are notoriously cheap, so the potential market does not get realized), and that keeps the price quite high. If you can afford it, you should have this program.

Spice now runs at a reasonable pace on the latest PCs, so it is back in the game. LT Spice is leading the charge because it is free, and the models are relatively rugged. Now that speed is less of a factor, you can put real switches in, and Spice can handle them in a reasonable amount of time. (Depending on your definition of “reasonable”.)

PSIM was another ideal switch model, and they eliminated the convergence headaches that plagued all the other programs by not having convergence at all. You just cut the step size down to get the accuracy you needed, and this worked fine for exploring power stages and waveforms, but was not good for fast transient feedback loops. As the digital controller people quickly realized, the resolution on the PWM output needed to avoid numerical oscillations is very fine, and PSIM couldn’t handle that without slowing down too much.

When I left Virginia Tech, I felt the bulk of the industry needed a fast simulation and design solution so engineers did not have to add to their burdens with worrying about convergence and other problems. This is a hardware-driven field, and we all have our hands full dealing with real life blowups that simulation just doesn’t begin to predict.

I have observed in teaching over the years that engineers in a hurry to get to the hardware have very little tolerance for waiting for simulation. If you are building a well-known topology, about 2 seconds is as long as they will wait before they become impatient.

This is the gap that POWER 4-5-6 plugs. The simulation is practically instantaneous, and the program has no convergence issues so you design and simulate rapidly before moving to a breadboard. It is intended for the working engineer who is under severe time pressure, but would like some simulation to verify design integrity.

AQ: Avoid generator overload

Two buses of 11kv, 750MVA, 3000A each fed by a transformer of 40MVA and connected through a tie breaker, now connect a generator of 18MW,11kv, 0.8 PF. How to avoid overloading?

The generator is being used as a backup power source in case utility power is lost, based on such info presented, you are going to have a hard time getting this to work with only ONE 18MW gen. In order to connect the 18MW gen to both buses, the total demand should not be more than 80% of 18MW or 14.4MW at .8 power factor. For short run times (10 or 15 minutes), you can load the gen up to 90% for continuous load, but for long run times, you need to keep it at 80%.

Demand is the diversified connected load. Not all 54.22MVA of connected load will be on at the same time, so this is why you “diversify” the load to get your actual demand load. You can look at your power bill or call your utility to find out your total demand. Or you can install a power quality monitor for a couple of weeks to get it.

A general rule of thumb is to assume that 67% of the connected load will be your demand load. But this depends on your operation. Based on this, one generator will not be sufficient for BOTH buses. However, if you are supplying each bus with its own generator, you may be ok.

Another issue is motor starting flicker. Make sure your generator can start your largest motor and that your disconnect breaker or fuses can handle the inrush. I have seen this as an issue, especially when soft starters are used. Soft starters lower the inrush by exploiting the time characteristic. If the soft starter settings do not bring the motor up to speed quickly enough, the overload trip setting on your generator may trip.

The bottom line is, you are going to have to look at this installation much closer in order to make this work with one 18MW gen. You may even have to disconnect some load when you are running on generator.