Category: Blog

AQ: Automation solution

Automation is a solution:
1. To reduce the manpower & the CTC due to them.

2. Few skilled technicians can run the automated machines smoothly, with much lesser number of errors & faults (as human is not directly controlling every thing & is not burdened with multitasking challenge for extended duration which causes fatigue and hence errors/faults)

3. The power consumption & time to market can be estimated & reduced as machines will be operated on time & can work for longer durations than human beings & they don’t ask for tea/coffee/lunch breaks nor they ask for incentives. (Care for peoples who are maintaining them as well as care for machines which are earning profits for you, by regular maintenance & regular proper inspection of their conditions). Now days very good automatic power mgmt processors/controllers are available which can maintain the power as per the defined conditions as per the load & real time necessity.

4. Train the operators / technicians regularly to keep them up to date with tricks / methods / operations / principals to handle most situations by their own (will reduce the cost of a nonsense manager who is kept to yell, threat & discriminate subordinates and know only one slogan: “do it properly, otherwise, i will ….”). A training department which actually hold the capability to technically train employees from labor to talented engineers is a necessity of this age, as things are not remains just a lifting boulder & digging holes. We are living in an advance age in which we are having many expectations, competition & external pressures.

5. Finance bugs cries for expenses on NRE costs, salaries & treats this investments like invested in a share/equity/debt fund, but, earning from a business & financial mgmt capability must be inline with level & operations performed by the company. Instead of keeping low minds in tech industries, hire the engineers who has reached to an expertise level in automation industry & know the in depth issues occurring in between & underneath to estimate & expect correct values & timelines. Qualified project managers are much more realistic in their approaches, thoughts, assumptions & mentality.

AQ: System with difference neutral

Q:
I have one system with two source. One from genset and the other from PLN (national power supply company) that each system has neutral.
The question is
1. Is there any problem if I connect both neutral directly?
2. Is there any spark when I connect both neutral?
3. How is the best solution to connect both neutral?

A:
1. I understand that the Genset is dedicated for essential load as an Emergency power supply which will be operated by hand (only in Manual Mode).

2. The Control Philosophy for a Generator that intended to be connected to PLN as emergency power source depends on the local service provider regulations.

3. Usually in your case there should be Electrical as well as Mechanical interlocks between the mains incomer & genset main breaker. ie both Sources will never be in Synchronism ( will not feeding the same load simultaneously).This measures will ensure that there will be only neutral point to the system.

AQ: Cross regulation for multiple outputs

Cross regulation is a very important component of multiple outputs. This can be done in several ways: transformer coupling, mutually coupled output filter chokes (forward-mode) and/or shared output sensing voltages/currents. All, of which, are impossible to model. I have tried them all.

I have sort of written of the first two off, since it is under the control of external vendors, which make their own decisions as to their most cost effective solutions. At best, transformer solutions yield a +/- 5 percent regulation, and can be many times much worse. .Coupled inductors yield a much better cross regulation, but the turns ratio is critically important. If you are off by one turn, you loose a percentage of efficiency.

Shared current/voltage cross sensing is so much more common sense. First, choose the respective weighing of the percentage of sense currents from each outputs approximately in proportion to their respective output powers. Keep in mind that, without cross-sensing, the unsensed outputs can be as much +/- 12 % out of regulation. Decide your sense current through you lower sense resistor. Then multiply your percentages by this sense current from your positive outputs. Calculate each output’s resistance to provide that respective current. Try it, you will be amazed. The negative outputs will also improve immensely.

One can visualize this by, if one senses only one output, only the load of that output influences the feedback loop, which, for example, increases the pulsewidth for each increase in load of the heavily loaded output. The lighter, unsensed loads go crazy. By cross sensing, the lighter loads are more under control and the percent of regulation of the primary load is loosened somewhat.
By sharing the current through the lower sense resistor, you can improve the regulation of every output voltage in a multiple output power supply.

AQ: Soft start motor tripped in fuel oil suction and discharge

First of all check all the component i.e.CB, CT, Heat Element, and the O/L setting then megger the motor to be shore that there is no problem with the motor winding insulation.
After that let the mechanical check the vibration analyses during the start-up also measure the startup currant of the motor and diffidently you will find where is the problem.
It could be a relay setting; or problem in the insulation; or even a problem in the motor itself.

On the other hand, check the motor on No Load condition and tune it to the Soft starter before coupling it to the pump.
Auto Tuning feature is generally inbuilt to Advanced soft starters.
If the No load startup of the motor is perfect, 2 causes arise:
1) Improper design.
2) Viscosity _ this can be tackled if you can make some temporary arrangement for pre-heating to confirm if this is the culprit.

As using soft starter could result in reducing torque of the motor. Soft starter normally reduces starting current by reducing starting voltage. However, decreasing voltage will lead to starting toque reduction. Hence, the motor may take longer time, especially when driving high-inertia load, with somewhat high current until it reach its full speed. Using an inverter will help you get full starting torque or even boost up it to 150-200% while keeping starting current at 150-200% of full load. Installation of heat tracing might also help and economic.

Assuming it is an electrical problem. On a motor of this size it has separate overload protection from the ground fault and short circuit protection. There are tolerance levels for motor that you may not be within. However a megger will not answer all the possibilities with motors unless you are ready to perform polarization index test etc….A power analyzer will allow you to see the operation in real world application. Assuming you have confirmed this is an electrical problem your next step would be to use a power analyser. You should be able to confirm by the signature and different placements of the analyzer the problem. Analyzer should be around all three phases.

AQ: Popularization of SPICE

I am currently writing a bullet point history of the popularization of SPICE in the engineering community. The emphasis is on the path SPICE has taken to arrive on the most engineering desktops. Because of this emphasis, my history begins with the original Berkeley SPICE variants, continues onto PSpice (its limited, but free student version made SPICE ubiquitous) and culminates with LTspice (because, at over three million downloads, it has reached many more users than all other SPICE variants combined).

I have contacted Dr. Laurence Nagel (the father of Berkeley SPICE) and Mike Engelhardt (LTspice) in order to verify the accuracy of the historical account (haven’t had a chance to fold in Dr. Nagel’s corrections yet), but I am lacking solid information about the beginnings of PSpice (I don’t even know who the technical founders of MicroSim were). Ian Wilson was an early technical V.P. Also, I am not sure what the PSpice acronym means. (Seems to me that it started out as uPspice?)

Here is what I have recently found about PSpice (more info appreciated):

User’s Guide to PSpice, Version 4.05, January 1991
From Chapter 1: INTRODUCTION, Section 1.1 Overview, starting with paragraph 2 (page 3):

“PSpice is a member of the SPICE family of circuit simulators. The programs in this family come from the SPICE2 circuit simulation program developed at the University of California at Berkeley during the early 1970’s. The algorithms of PSICE2 were considerably more powerful and faster than their predecessors. The generality and speed of SPICE2 led to its becoming the de facto standard for analog circuit simulation. PSpice uses the same numeric algorithms as SPICE2 and also conforms to the SPICE2 format for input and output files. For more information on SPICE2, see the references listed in section 13.2.1.4 (page 427, especially the thesis by Laurence Nagel.

“PSpice, the first SPICE-based simulator available on the IBM-PC, started being delivered in January of 1984.

“Convergence and performance is what sets PSpice apart from all the other ‘alphabet’ SPICEs. Many SPICE programs became available on the IBM-PC around mid-1985, after Microsoft released their FORTRAN complier version 3.0. For the most part, these SPICEs are little modified from the U.C. Berkeley code. Using benchmark circuits, we find that PSpice runs anywhere from 1.3 to 30 times faster than our imitators. In the area of convergence, PSpice has a two-year lead in improving convergence and a customer base that is larger than all of the other SPICE vendors combined (including those SPICEs offered for workstations and mainframes). This larger customer base provides more feedback, sooner, than any other SPICE program is likely to receive.”

From Chapter 1: INTRODUCTION, Section 1.4 Standard Features, last paragraph (page 7):

“PSpice, version 3.00 (Dec. 1986) and later, is a complete re-write of the simulator into the ‘C’ pro-gramming language. It is not a version of SPICE3, from U.C. Berkeley, which is also written in ‘C’. MicroSim has overhauled the data structures and code, however the analog simulation algorithms are similar and the numeric results are consistent with SPICE2 and SPICE3. Having the simulator re-written in ‘C’ allows faster development, allowing our team to reliably modify and extend the simulator in sev-eral directions at once.”

From the January 1987 Newsletter: PSpice went from version 2.06 (Fortran) to version 3.00 (C). Speed increased by 20%. PSpice 3.01 (Dec 86) introduced the non-linear Jiles and Atherton core model.

From the April 1987 Newsletter: PSpice 3.03 (Apr 87) introduced ideal switches.

From the July 1991 Newsletter: PSpice announced Schematics at the June 1991 Design Automation Conference. (Became available when PSpice 5.0 shipped in July 91?)

Solving Differential Equations with Mic

AQ: Improve PF of pumping motor with soft starter controlled

I have 3 pumping motors of 1750 kw 6.6kv, with soft starter they are maintaining a pf of .96-.97. Now I want to install HT capacitors to use these motors in d.o.l, can I take the pf to .99 by using this?

If you are using soft starters now, do not take them out. These are really large motors and starting them across the line is not a good idea. The utility serving you should have designed their service based on you having soft starters for these motors. They probably also have a stipulation stating that you cannot start them all at the same time. Starting one or more them across the line may cause the utility’s transformer fuses to fail. Even if it doesn’t, the flicker may cause other processes in your facility to trip. Especially drives or undervoltage relays in MCC’s.

The only reason to install caps at this point would be to correct for power factor. Since your pf is .96 it will take years if not decades to get a return on your investment (ROI). My utility does not charge a pf penalty until you drop below .90. And even then, it is usually not worth installing a cap bank unless you are under .85 and correct to >.95. Most customers require a 3 to 5 year ROI and you will never get that. We always recommend designing for a .95 pf to leave some “headroom”. So, your existing design sounds like it is correct. Your company may also have a “kva rate” instead of a “kw rate” with the utility. Check with your utility marketing rep to verify what type rate you are own and to help you evaluate your ROI.

Also, when you install a capacitor bank you have to make sure that you do not hit a resonant harmonic frequency. You will have to get the utility involved to give you the short circuit data at the PCC (point of common coupling). If the calculated harmonic resonant point is near the 3,5,7,11 or 13 harmonic, you will need a harmonic filter installed in conjunction with the capacitor bank. That means more money and a longer ROI.

AQ: Simulator history

Power electronics has always provided a special challenge for simulation. As Hamish mentioned above, one of the problems encountered is inductor cutsets, and capacitor loops that lead to numerical instability in the simulation matrices.

In the 80s, Spice ran so slowly that is was not an option unless you wanted to wait hours or days for results, and frequently it failed to converge anyway. It was never intended to handle the large swings of power circuits, and coupled with the numerical problems above, was just not a feasible approach.

Ideal-switch simulations were used with other software to get rid of many of the nonlinearities of devices that slowed simulation down, but Spice really hated ideal switches as it would try to converge on the infinite slope edges.

Three universities started writing specialized software for converter simulation to address this shortcomings of Spice. Virginia Tech had COSMIR, which I helped write with a grad student, Duke University had the program which later became Simplis, and the University of Lowell had their program, the name of which I don’t recall (anyone remember?).

All of these programs started before Windows came along, and they were fast and efficient. With windows, the programming overhead to maintain programs like these moved beyond the scope of what university research groups in power electronics could handle. Only the Duke program survived, with Ron Wong leading the effort at a private company. The achievements of Simplis are remarkable, but it is a massive effort to keep this program going for a relatively small marketplace (power supply companies are notoriously cheap, so the potential market does not get realized), and that keeps the price quite high. If you can afford it, you should have this program.

Spice now runs at a reasonable pace on the latest PCs, so it is back in the game. LT Spice is leading the charge because it is free, and the models are relatively rugged. Now that speed is less of a factor, you can put real switches in, and Spice can handle them in a reasonable amount of time. (Depending on your definition of “reasonable”.)

PSIM was another ideal switch model, and they eliminated the convergence headaches that plagued all the other programs by not having convergence at all. You just cut the step size down to get the accuracy you needed, and this worked fine for exploring power stages and waveforms, but was not good for fast transient feedback loops. As the digital controller people quickly realized, the resolution on the PWM output needed to avoid numerical oscillations is very fine, and PSIM couldn’t handle that without slowing down too much.

When I left Virginia Tech, I felt the bulk of the industry needed a fast simulation and design solution so engineers did not have to add to their burdens with worrying about convergence and other problems. This is a hardware-driven field, and we all have our hands full dealing with real life blowups that simulation just doesn’t begin to predict.

I have observed in teaching over the years that engineers in a hurry to get to the hardware have very little tolerance for waiting for simulation. If you are building a well-known topology, about 2 seconds is as long as they will wait before they become impatient.

This is the gap that POWER 4-5-6 plugs. The simulation is practically instantaneous, and the program has no convergence issues so you design and simulate rapidly before moving to a breadboard. It is intended for the working engineer who is under severe time pressure, but would like some simulation to verify design integrity.

AQ: Avoid generator overload

Two buses of 11kv, 750MVA, 3000A each fed by a transformer of 40MVA and connected through a tie breaker, now connect a generator of 18MW,11kv, 0.8 PF. How to avoid overloading?

The generator is being used as a backup power source in case utility power is lost, based on such info presented, you are going to have a hard time getting this to work with only ONE 18MW gen. In order to connect the 18MW gen to both buses, the total demand should not be more than 80% of 18MW or 14.4MW at .8 power factor. For short run times (10 or 15 minutes), you can load the gen up to 90% for continuous load, but for long run times, you need to keep it at 80%.

Demand is the diversified connected load. Not all 54.22MVA of connected load will be on at the same time, so this is why you “diversify” the load to get your actual demand load. You can look at your power bill or call your utility to find out your total demand. Or you can install a power quality monitor for a couple of weeks to get it.

A general rule of thumb is to assume that 67% of the connected load will be your demand load. But this depends on your operation. Based on this, one generator will not be sufficient for BOTH buses. However, if you are supplying each bus with its own generator, you may be ok.

Another issue is motor starting flicker. Make sure your generator can start your largest motor and that your disconnect breaker or fuses can handle the inrush. I have seen this as an issue, especially when soft starters are used. Soft starters lower the inrush by exploiting the time characteristic. If the soft starter settings do not bring the motor up to speed quickly enough, the overload trip setting on your generator may trip.

The bottom line is, you are going to have to look at this installation much closer in order to make this work with one 18MW gen. You may even have to disconnect some load when you are running on generator.

AQ: Power electronics design

If you are interested in power electronics design at the board or system level, I would recommend LTspice (note the correct spelling) by far above all the others. In addition to being superb for IC design (Linear Tech uses LTspice to design all their own ICs), it also has been specifically designed to run board level, switched mode simulations.

Because of its robust, excellent performance and because it is available at zero cost, LTspice has become the de facto standard SPICE with by far more engineers using it than any other flavor of SPICE. LTspice allows 100 percent transportability and work sharing, i.e., anyone, even those who have not been previous users, can open your files and run your simulations (the free download is well under 10Mb, installs very quickly and is very system friendly – not cookies, messy registry alterations, scattering of installation folders, etc. – removal, if you so choose, is easy and complete).

Like most versions of SPICE today, LTspice has a fine user interface, but that feature should be low on your list. Schematic entry is NOT where you will be spending most your time when doing serious design work. Beyond a point, desktop eye-candy does nothing to help you understand your design and see its flaws and weaknesses (in fact, too many layers of hand holding can just get in the way of that).

Personally, I never breadboard a design anymore until it has proven itself in LTspice (unlike with a breadboard, a simulated circuit’s internals are ALL easily viewable – a great boon for understanding tricky operation). For me, first hardware is always a complete layout (and matches the simulation every time). Of course, the old axiom “garbage-in, garbage-out” very much applies, which means I often spend a lot of upfront time verifying (and modifying and/or making) models to match their components’ data sheets. In fact, I would recommend doing that as a very worthwhile exercise and as something that should impress a potential employer.

When developing a design in SPICE, you will want to spend your time debugging your design, not your simulation or your simulator, therefor it is worthwhile to learn what a simulator needs to run smoothly (with LTspice, all that means is that the input has to be realistic). It was years of working with simulators and a lot of sweat and aggravation before the keys to problem-free simulations gradually crept into my understanding.

1. If possible, make all nonlinear circuit elements be functionally continuous with continuous derivatives (this is not possible for some component behaviors), and

2. *always* craft your simulations so that the nonlinear bits become linear at high frequencies (this is always possible). Non linear devices should never be strict voltage sources. They should be Nortonized and be shunted with small capacitances such that the capacitances (which are linear elements) dominate at small time steps.

3. Always verify that the building blocks of your simulation behave realistically (GIGO).

Follow these guidelines and you will never see the “time step too small” message (I have never met a simulation that couldn’t be made to run well). Note that many (if not most) vendor supplied models fail to meet these guidelines and will give you nothing but headaches if you try to use them “as is.”

AQ: High current intensity harmonics [%THD (A)] in several motors?

Most electric motors that suffer variations in Load already have variable frequency drives, we have capacitors installed in general switchboard to correct the reactive energy and so on. I did a discretization of the electrical consumption by product type, during this energy survey I noticed that in most motors Amperage THD was high, above 40%. I would like to know what effect does it have on efficiency and possible causes and solutions.

One more thing, when is it profitable to substitute motors by high efficiency motors? Because in the transport system I have about 60 electric motors below 10HP with a power factor of 0,6 , I was thinking in installing a capacitor in the switchboard of the transport system.

Variable frequency drives and other power electronic loads will draw harmonic currents from the power source. More VFDs, UPSs, rectifiers, etc means more harmonic current. When harmonic current flows through system impedance, it causes harmonic voltage to be present on the power system. That means there are essentially harmonic voltage sources at each harmonic frequency and therefore loads will draw current (harmonics) at each one of those frequencies. PF Capacitors offer a low impedance path to harmonics (attracting them) and may be damaged when connected to a system with harmonic producing loads. It is also possible for capacitors to cause a resonance condition whereby the harmonics can be amplified. Consider detuned capacitors (with harmonic blocking reactors) or addition of harmonic filters. There are several alternative methods of filtering the harmonics.