Category: Blog

AQ: Power converter trend

The trend toward lower losses in power converters is not apparent in all of the applications of power converters. It is also not apparent that the power converter solution and its losses for a given market will be the same when it comes to losses. In terms of the market shift that you mention, Prof. the answer is probably that each market is becoming split into a lower efficiency and higher efficiency solution.

From my limited view the reason for this is the effort and time required to do the low loss development. The early developers of low loss converters are now ahead and those that were slower may never catch them. This gap is in a number of converter markets widening, with both higher loss and lower loss offerings continuing to be used and sold. This split is not apparent with different levels of development or geographically.

Some markets already have very efficient solutions, other markets not so efficient and others had high power loss solutions. The customers accepted these solutions. The path to lower loss converters is for some markets not yet clear and in some markets the requirement may never actually become real.

It does seem that there is a real case to make for any power converter market splitting in two as the opportunities presented by lowering the power loss are taken.

All low loss converters present significant challenges and are all somewhat esoteric.

For me power supply EMI control consists of designing filtering for differential and common mode conducted emissions. The differential mode filtering attenuates the primary side differential lower frequency switching current fundamental & harmonic frequencies. The common mode filtering provides a low impedance return path for high frequency noise currents resulting from high dV/dt transitions during switching transitions present on the power semiconductors (switching mosfet drain, rectifier cathods). These noise currents ring at high frequencies as they oscillate in the uncontrolled parasitic inductance and capacitance associated with their return to source path. Shortening and damping this return path allows the high frequency noise currents to return locally instead of via the measurement copper bench and conducted emi current or voltage (LISN) probe as well as providing a more damped ringing frequency. Shorting this return path has the added benefit of decreasing radiated emissions. In addition proper layout of the power train so as to minimize the loop area associated with both the primary and secondary side switching currents minimizes the associated radiated emissions.

When I mentioned the criticism of resonant mode converter as related to the challenges of emi filitering I was referring to the additional differential mode filtering required. For example if you take a square wave primary side current waveform and analyze the differential frequency content the fundamental magnitude with be lower and there will be higher frequency components as compared to a purely resonant approach at the same power level. It is normally the lower frequency content that has to be filtered differentially.

Given these differences the additional emi filtering volume/cost of the resonant approach may pose a disadvantage.

AQ: flyback & boost applications

For flyback & boost applications, powder cores such as Kool-mu, Xmu, etc… are usually best performing and lowest cost. Even these may need to be gapped and if CCM operation is required, a “stepped-gap” is preferred to allow a large load compliance. Center stepped gaps reduce the fringe flux greatly as there is never a complete gap, only localized saturation. This permits the inductor’s value to “swing” more and accommodate the required operation.
With only the center leg with a gap, the outer copper band can be applied without significant loss.

To explore further, dissimilar core materials can be used in parallel, ferrite & powdered types, such that different materials provide function at different operating points within the same construction. Some decades ago, we had some high power projects that utilized fixed magnets within a ferrite’s gap to provide a flux bias offset for a forward topology.

Abe Pressman wasn’t big on exploring magnetic losses, however he operated at lower frequencies than are typical today. MPPs are great with large DC bias, but suffer high loss if AC swing is large and fast. Toroids also have the least efficient winding window, however, they are best to mitigate emi.

AQ: Grain Storage system

A Grain Storage system usually consists of the following elements

1. A means of measuring Grain coming in and out- Usually a truck scale or a bulk weighing system. In addition some applications require measuring grain between transfers to different bins and a bulk weighing system is usually used for that.

2. A means of transferring between different operations or storage location- Conveyors, screws, buckets, pneumatic, wheel house.

3. Dust Collection

4. And Equipment for the operations that will be performed, drying, cleaning, screening, grading, sampling, roasting, steaming, packaging etc.

A system I have just completed was 24 containers + 3 buildings for storage with 76 conveyors, 3 drop-off and 3 loading points. Connection to ERP system and weigh scales to weigh trucks and send them to the correct bay. Local HMI on each bay ensured correct lorry goes to correct bay. Main conveyor runs are automatically selected. Manual option to run all conveyors to move grain around.

System used Ethernet infrastructure with hubs mounted strategically around tank farm. Also implemented soft starter with Ethernet connectivity, thus allowing easy monitoring of current consumption + for maintenance.

The future-proof design will allow customer to install level and humidity measurement in the future using the Analogue IO connected on Ethernet.

AQ: How to suppress chaotic operation in a DCM flyback at low load

I would like to share these tips with everybody.
A current mode controlled flyback converter always becomes unstable at low load due to the unavoidable leading edge current spike. It is not normally dangerous but as a design engineer I don’t like to look at it and listen to it.

Here are three useful and not patented tips.

First tip:
• Insert a low pass filter, say 1kohm + 100pF between current sense resistor and CS input in your control IC.
• Split the 1kohm in two resistors R1 to the fet and R2 to the control IC. R1 << R2.
• Insert 0,5 – 1pF between drain and the junction R1/R2. This can be made as a layer-to-layer capacitor in the PCB. It does not have to be a specific value.
• Adjust R1 until the spike in the junction in R1/R2 is cancelled.
You will see that the current spike is always proportional to the negative drain voltage step at turn-on. Once adjusted, the cancellation always follows the voltage step, and you some times achieve miracles with it. Cost = one resistor.

Second tip:
Having the low pass filter from first tip, add a small fraction of the gate driver output voltage to the current sense input, say 0,1V by inserting a large resistor from ‘Drive Out’ to ‘CS input’. The added low pass filtered step voltage will more or less conceal the current spike. You should reduce your current sense resistor accordingly. Cost = one resistor.

Third tip:
In a low power flyback, you some times just need an RC network or just an extra capacitor from drain to a DC point, either to reduce overshoot or to reduce noise. Connect the RC network or the capacitor to source, not to ground or Vcc. If you connect it to ground or Vcc, you will measure the added discharge current peak in the current sense resistor. Cost = nothing – just knowledge.

All tips can be used individually or combined => Less need for pre-load resistors on your output.

AQ: Determine coefficient of grounding

Determination of required grounding impedance is based on determination of coefficient of grounding which represents ratio of maximum phase voltage at phases which aren’t exposed by fault and line voltage of power network:

kuz=(1/(sqrt(3)))*max{|e(-j*2*π/3)+(1-z)/(2+z)|; |e(+j*2*π/3)+(1-z)/(2+z)|}
z=Z0e/Zde

where are:

kuz-coefficient of grounding,
z-ratio of equivalent zero sequence impedance viewed from angle of place of fault and equivalent direct sequence impedance viewed from angle of place of fault,
Z0e-equivalent zero sequence impedance viewed from angle of place of fault,
Zde-equivalent direct sequence impedance viewed from angle of place of fault.

So, after this explanation, you can get next conclusions:
if kuz=1 then power network is ungrounded because Z0e→∞, which is a consequence of existing more (auto) transformers with ungrounded neutral point than (auto) transformers with grounded neutral point (when kuz=1 then there aren’t (auto) transformers with grounded neutral point),
if kuz≤0,8 then power network is grounded because Z0e=Zde, which is a consequence of of existing more (auto) transformers with grounded neutral point than (auto) transformers with ungrounded neutral point.

Fault current in grounded power networks is higher than fault current in ungrounded power networks. By other side, in case of ungrounded power networks we have overvoltages at phases which aren’t exposed by fault, so insulation of this conductors could be seriously damaged or in best case it could become older in shorter time than it is provided by design what is the main reason for grounding of power networks.
Coefficient of grounding is very important in aspect of selecting of insulation of lighting arresters and breaking power of breakers, because of two next reasons:
1. in grounded power networks insulation level is lower than insulation level in ungrounded power networks,
2. in grounded power networks value of short circuit current is higher than value of short circuit current in ungrounded power networks.

AQ: Differences of Grounding, Bonding and Ground Fault Protection?

Grounding (or Earthing) – intentionally connecting something to the ground. This is typically done to assist in dissipating static charge and lightning energy since the earth is a poor conductor of electricity unless you get a high voltage and high current.

Bonding is the intentional interconnection of conductive items in order to tie them to the same potential plane — and this is where folks get the confusion to grounding/earthing. The intent of the bonding is to ensure that if a power circuit faults to the enclosure or device, there will be a low-impedance path back to the source so that the upstream overcurrent device(s) will operate quickly and clear the fault before either a person is seriously injured/killed or a fire originates.

Ground Fault Protection is multi-purpose, and I will stay in the Low Voltage (<600 volts) arena. One version, that ends up being seen in most locations where there is low voltage (220 or 120 volts to ground) utilization, is a typically 5-7 mA device that’s looking to ensure that current flow out the hot line comes back on the neutral/grounded conductor; this is to again protect personnel from being electrocuted when in a compromised lower resistance condition. Another version is the Equipment Ground Fault Protection, and this is used for resistive heat tracing or items like irrigation equipment; the trip levels here are around 30 mA and are more for prevention of fires. The final version of Ground Fault Protection is on larger commercial/industrial power systems operating with over 150 volts to ground/neutral (so 380Y/220, 480Y/277 are a couple typical examples) and — at least in the US and Canada — where the incoming main circuit interrupting device is at least 1000 amps (though it’s not a bad idea at lower, it’s just not mandated); here it’s used to ensure that a downstream fault is cleared to avoid fire conditions or the event of ‘Burn Down’ since there’s sufficient residual voltage present that the arc can be kept going and does not just self-extinguish.

In the Medium and High Voltage areas, the Ground Fault Protection is really just protective relaying that’s monitoring the phase currents and operating for an imbalance over a certain level that’s normally up to the system designer to determine.

AQ: PMBLDC motor in MagNet

You can build it all in MagNet using the circuit position controlled switch. You will have to use motion analysis in order to use the position controlled switches. You can also use the back EMF information to find what the optimal position for the rotor should be with respect to the stator field. The nice thing about motion is that even if you do not have the rotor in the proper position you can set the reference at start up.

Another way of determining that position is to find the maximum torque with constant current (with the right phase relationship between phases of course) and plot torque as a function of rotor position. The peak will correspond to the back EMF waveform information.

If you want to examine the behavior of the motor with an inverter then another approach works very well. There are 2 approaches you can use with MagNet: 1) co-simulation, and, 2) reduced order models. The former can be used with matlab with Simulink or Simpower Systems and runs both Matlab and MagNet simultaneously. The module linking the two systems allows 2 way communication between the modules hence sharing information. The latter requires that you get the System Model Generator (SMG) from Infolytica. The SMG will create a reduced order model of you motor which can then be used in Matlab/Simulink or any VHDL-AMS capable system simulator. A block to interpret the data file is required and is available when you get the SMG. Reduced order models are very interesting since they can very accurately simulate the motor and hook up to complex control circuits.

AQ: SCADA & HMI

SCADA will have a set of KPI’s that are used by the PLCs/PACs/RTUs as standards to compare to the readings coming from the intelligent devices they are connected to such as flowmeters, sensors, pressure guages, etc.

HMI is a graphical representation of your process system that is provided both the KPI data and receives the readings from the various devices through the PLC/PAC/RTUs. For example you may be using a PLC that has 24 i/o blocks that are connected to various intelligent devices that covers part of your water treatment plant. The HMI software provides the operator with a graphical view of the treatment plant that you customize so that your virtual devices and actual devices are synchronized with the correct i/o blocks in your PLC. So, when an alarm is triggered, instead of the operator receiving a message that the 15th i/o block on PLC 7 failed, you could see that the pressure guage in a boiler reached maximum safety level, triggering a shutdown and awaiting operator approval for restart.

Here is some more info I got from my colleague who is the expert in the HMI market, this is a summary from the scope of his last market study which is about a year old.

HMI software’s complexity ranges from a simple PLC/PAC operating interface but as plant systems have evolved, HMI functionality and importance has as well. HMI is an integral component of a Collaborative Production Management (CPM) system; simply you can define that as the integration of Enterprise, Operations, and Automation software into a single system. Collaborative Production Systems (CPS) require a common HMI software solution that can visualize the data and information required at this converged point of operations and production management. HMI software is the bridge between your Automation Systems and Operations Management systems.

An HMI software package typically performs functions such as process visualization and animation, data acquisition and management, process monitoring and alarming, management reporting, and database serving to other enterprise applications. In many cases, HMI software package can also perform control functions such as basic regulatory control, batch control, supervisory control, and statistical process control.

“Ergonometrics,” where increased ergonomics help increase KPI and metric results, requires deploying the latest HMI software packages. These offer the best resolution to support 3D solutions and visualization based on technologies such as Microsoft Silverlight. Integrating real-time live video into HMI software tools provide another excellent opportunity to maximize operator effectiveness. Live video provides a “fourth dimension” for intelligent visualization and control solutions. Finally, the need for open and secure access to data across the entire enterprise drives the creation of a single environment where these applications can coexist and share information. This environment requires the latest HMI software capable of providing visualization and intelligence solutions for automation, energy management, and production management systems.

AQ: AM & FM radio

For AM & FM radio & some data communications adding the QP filter make sense.
Now that broadband, wifi, data communications of all sizes & flavours exist – any peak noise is very likely to cause interuptions & loss of integrity of data – all systems are being ‘cost reduced’ ensuring that they will be more susceptible to noise.
I can understand the reasons for the tightening of the regulations.
BUT, it links in to the other big topic of the moment – the non-linearity of managers.
William is obviously his own manager – I bet if his customer was to ask him to spend an indefinite amount of time fixing all the root causes to meet the spec perfectly without any additional cost it would be a different matter.

Unfortunately for most of us the realities of supervisors wanting projects closed & engineering costs minimized we have to be careful in the choice of phrasing.
Any suggestion that one prototype is ‘passing’ suddenly can be translated to job finished, & even in our case where the lab manager mostly understands, his boss rarely does & the accountant above him – not at all.

It gets worse than that – at the beginning of a project (RFQ) – the question is “how long will EMC take to fix?” with the expectation if a deterministic answer; the usual response of a snort of derision & how long is a piece of string generally translates to 2 weeks & once set in stone becomes a millstone (sorry mile-stone).

We already have a number of designs that while not intentionally using dithering, do use boundary mode PFC circuits which automatically force the switch frequency to vary over the mains cycle. These may become problematic at some future variation of the wording of the EMC specs.

While I have a great deal of sympathy for the design it right first time approach, the bottom line for any company is – it meets the requirement (today) – sell it!!

AQ: Electronic industry standards

You know standards for the electronic industry have been around for decades, so each of the interfaces we have discussed does have a standard. Those standards may be revised but will still be used by all segments of our respective engineering disciplines.

Note for example back in the early 1990s many big companies HP, Boeing, Honeywell … formed a standards board and developed the Software standards( basic recommendations) for software practices for programming of flight systems. It was not the government it was the industry that took on the effort. The recommendations are still used. So an effort is first needed by a meeting of the minds in the industry.

Now we have plenty of standards on the books for the industry, RS-422, RS-232, 802.1 … and the list goes on and on. The point is most of the companies are conforming to standards that may have been the preferred method when that product was developed.

In the discussion I have not seen what the top preferred interfaces are. I know in many of the developments I have been involved in we ended up using protocol converters, Rs-232 to 802.3, 422 to 485 … that’s the way it’s been in control systems, monitoring systems, Launch systems and factory automation. And in a few projects no technology existed for the interface layer, had to build from scratch. Note the evolution of ARPA net to Ethernet to the many variations that are available today.

So for the short hall if I wanted to be more comparative I would use multiple interfaces on my hardware say usb, wireless, and 422. Note for new developments. With the advancement in PSOCS and other forms of program logic interface solutions are available to the engineer.

Start the interface standards with the system engineers and a little research on the characteristic of the many automation components and select the ones that comply with the goals and the ones that don’t will eventually become obsolete. If anything, work on some system standards. If the customer is defining the system loan him a systems engineer, and make the case for the devises your system or box can support, if you find your product falls short build a new version. Team with other automation companies on projects and learn from each other. It’s easy to find issues as to why you can’t succeed because of product differences, so break down the issues into manageable objectives and solve one issue at a time. As they say divide and concur.