Category: Blog

AQ: Benefits of Having products and services in the same company

Having products and services in the same company can either be treated as an opportunity or as a constraint. I strongly believe that having services and products in the same company should be treated as an opportunity, and that any potential constraints should be eliminated.

Here are the things that I have learned.

First: Never limit the product sales to the capacity of your service organization:
I see some companies that develop products that are so great that they want to be the only organization delivering, implementing and maintaining them. They believe that the products are a competitive advantage that will allow them to dominate the services market. This almost always fails; your example from Xerox is one of many. One of two things tend to happen: Either the product does not reach its full market potential due to limited services capacity, or the product organization limits their innovation and product development so that it can continue a lucrative services business. Both may be good short term, but fails on a longer term basis.
My recommendation is that companies that have both products and services should allow their products to be delivered, implemented and maintained by other companies that compete with themselves in the services market.

Second: Never limit the services that you offer to the products that you have in your own portfolio:
Service organizations are typically focused on delivering, implementing and maintaining solutions for their customers. They deliver more than just the product. If you limit the services to only focus on the products in the in-house portfolio, then you are either going to miss opportunities to sell services or you are going to get a portfolio that is too broad. Neither of them is good.
My recommendation is that companies that have both products and services should allow their services organization to deliver products from everywhere, even products that directly compete with the products in their own portfolio. This will ensure that the services organization stays competitive.

Third: Leverage the synergies between products and services:
You may ask “why have both products and services in the same organization if they need to be kept separate?”. The answer lies in the synergies. Companies need to create a culture where the product and services organizations can collaborate even though they are independent. Good organizations can make good decisions about when to expand their own portfolio and when to solve the same customer problems through services and/or third party products. I have seen great innovations come from organizations that master this.

Having products and services in the same organization creates a great foundation for innovation. The key to success is to have the right company culture.

AQ: Operate low speed generator and high speed generator in the same terminal

Can we operate low speed generator and high speed generator in the same terminal? Is there a mechanical effect?

First, specify that this is an isolated system with two generators feeding the same bus. Operation of an isolated system is different than a grid connected system, and the mode setting of the governors have to be set to accommodate this. Depending upon the prime mover type and governor model, improper tuning will manifest itself in speed variations. The size of the two machines relative to each other, as well as their size relative to the load, can have measurable impact as well. The best way to tell whether it is mechanical or electrical in nature is to look at the time-frame of the phenomena relative to the time constants of the various control and response loops.

Second, “…In large power system, generators are not connected in the same terminal…” is not generally true, there are many power plants where multiple generators feed the same bus before the power is utilized.

Third, “…frequency oscillation is about 1.5-2 Hz…”, if you mean that the frequency swings between 48 and 52 Hz routinely, that usually indicates a governor setup/tuning problem or a non-uniform load.

Fourth, reactive current compensation takes place in quadrature from real power and should have minimal effect on real power and only affect the terminal voltage if not set properly. Droop compensation is the means for ensuring that the AVRs do not fight with each other since you cannot have two independent controllers attempting to control the same control variable.

Fifth, regarding different types of prime movers, some are inherently more likely to induce mechanical vibrations, especially reciprocating engines, especially if they are not all of the same size and/or number of cylinders. The same is true of the loads, non-uniform, cyclic loads can cause very severe problems especially on isolated systems where the load is a significant percentage of the prime movers’ output power. The analysis of, and solution to, such problems is an interesting area of study.

AQ: Why we need Engineers?

Even the humble motor car runs diagnostics that the garage read to see the problems with your car. This doesn’t involve technicians looking at the code that controls the car but is 100% driven by the faults flagged by the car’s management system programs. These could even be displayed to the users, the drivers like me and you but the manufacturers don’t want amateurs hacking around their management systems and you know that is exactly what we would do.

Do we ask for this functionality from our car manufacturer? Do we complain about it and ask for them not to fit it? Would we like to go back to the “golden age” of motoring where we spent as much time under the hood as we did on the road?

You do?…. Yeah right and neither do I nor do I want a plant where I need a guy with a laptop to diagnose a blown fuse, sticking valve, overload trip, etc .

We need to change as Engineers by selling systems to customers that fulfill their needs, that are safe and reliable, that follow industry and international best practices and are user friendly. The notion of having to wait for a blank cheque from the customer to fulfill these goals is really a cop out, you either do what is right or just walk away because at the end of all this it is you who are under scrutiny when things go wrong not the customer who will plead ignorance.

AQ: DC Drives Parameter Setting / Programming

Programming parameters associated with DC drives are extensive & similar to those used in conjunction with AC drives. An operator’s panel is used for programming of control setup & operating parameters for a DC drive.

SPEED SETPOINT
This signal is derived from a closely regulated fixed voltage source applied to a potentiometer. The potentiometer has the capability of accepting the fixed voltage & dividing it down to any value, For example, 10 to 0 V, depending on where it’s set. A 10-V input to the drive from the speed potentiometer corresponds to maximum motor speed & 0 V corresponds to zero speed. Similarly any speed between zero & maximum can be obtained by adjusting the speed control to the appropriate setting.

SPEED FEEDBACK INFORMATION
In order to “close the loop” & control motor speed accurately, it’s necessary to provide the control with a feed back signal related to motor speed. The standard method of doing this in a simple control is by monitoring the armature voltage & feeding it back into the drive for comparison with the input setpoint signal. The armature voltage feedback system is generally known as a voltage regulated drive.

A second & more accurate method of obtaining the motor speed feedback information is from a motor mounted tachometer. The output of this tachometer is directly related to the speed of the motor. When tachometer feedback is used, the drive is referred to as a speed regulated drive.

In some newer high-performance digital drives, the feedback can come from a motor-mounted encoder that feeds back voltage pulses at a rate related to motor speed.

These pulses are counted & processed digitally & compared to the setpoint, an error signal is produced to regulate the armature voltage & speed.

CURRENT FEEDBACK INFORMATION
The second source of feedback information is obtained by monitoring the motor armature current. This is an accurate indication of the torque required by the load.

The current feedback signal is used to eliminate the speed droop that normally would occur with increased torque load on the motor & to limit the current to a value that will protect the power semiconductors from damage. The current-limiting action of most controls is adjustable & is usually called current limit or torque limit.

MINIMUM SPEED
In most cases, when the controller is initially installed the speed potentiometer can be turned down to its lowest point & the output voltage from the controller will go to zero, causing the motor to stop. There are, how ever, situations where this is not desirable. E.g.,, there are some applications that may need to be kept running at a minimum speed & accelerated up to operating speed as necessary. The typical minimum speed adjustment is from 0 to 30 percent of motor base speed.

MAXIMUM SPEED
The maximum speed adjustment sets the maximum speed attainable. In some cases it’s desirable to limit the motor speed (and machine speed) to something less than would be available at this maximum setting. The maximum adjustment allows this to be done.

IR COMPENSATION
Although a typical DC motor presents a mostly inductive load, there is always a small amount of fixed resistance in the armature circuit. IR compensation is a method used to adjust for the drop in a motor’s speed due to armature resistance. This helps stabilize the motor’s speed from a no-load to full-load condition. IR compensation should be applied only to voltage-regulated drives.

ACCELERATION TIME
As its name implies, the acceleration time adjustment will extend o

AQ: Power industry engineers

The power industry has many tentacles. Energy production is one key subset, the design, manufacture, installation and operation of hydro, nuclear, fossil, renewables, etc is continuing to grow especially in the renewable area. Then there is the transmission of energy which includes the design/manufacture/construction/maintenance of substations, protection and control systems, overhead and underground lines, series and shunt compensation, etc. Last there is the distribution of the energy to the customers at the lower voltages which includes many of the transmission opportunities but introduces other niche areas like power quality, smart metering, distributed generation, etc.

It’s not as simple as stating you want a PHD in the power industry with hands on experience without first knowing the ins and outs of the business. As has been previously mentioned, get your BS in EE with a slant toward power. Get a job in a utility and learn the business top to bottom so you can actually make an intelligent decision on what area of the business floats your boat. Once you know that then pursue an advanced degree in that specific area (the real bonus is most companies will pay for it).

AQ: Systems Development Life-Cycle

Step 1. Initiation
Step 2. System Concept Development
Step 3. Planning
Step 4. Requirements Analysis
Step 5. Design
Step 6. Development
Step 7. Integration and Test
Step 8. Implementation
Step 9. Operation and Maintenance
Step 10.Disposition

There are three major players present in this model; Customer (client), System Integrator, and Machine or device manufacturer.

In many instances, the result of step 4 (Requirements Analysis), is an RFQ for the system implementation has been issued to one or more systems integrators. Upon selecting the system integrator, step 5 (Design) begins. Upon completing step 5 (Design), the system or process flow is defined. One of the major outputs from step 5 are the RFQs for the major functional components of the finished system. Based on the RFQ responses (bids), the Machine or device manufacturers are chosen.

Steps 6, 7, and 8 are where all the individual functional components are integrated. This is where the system integrator makes sure the outputs and feedback between to machines or devices is defined and implemented. Step 8 ends with a full systems functional test in a real manufacturing situation is demonstrated to the customer. This test includes demonstrating all error conditions defined by the requirements document and the systems requirements document. If a specific device or machine fails its respective function it is corrected (programming, wiring, or design) by the manufacturer and the test begins anew.

Each of the scenarios presented is correct. The technician role being presented (customer, integrator, or manufacturer) is not clear. System diagnostics are mandatory and need to be well defined, even in small simple machines. There should be very few and extreme conditions under which the customer’s technician should ever have to dig into a machine’s code to troubleshoot a problem. This condition usually indicates a design or integration oversight.

(You can find a complete description here, http://en.wikipedia.org/wiki/Systems_development_life-cycle)

AQ: DC Drives Field Voltage Control

To control the speed of a DC motor below its base speed, the voltage applied to the armature of the motor is varied while the field voltage is held at its nominal value. To control the speed above its base speed, the armature is supplied with its rated voltage & the field is weakened. For this reason, an additional variable-voltage field regulator is needed for DC drives with field voltage control. Field weakening is the act of reducing the current applied to a DC motor shunt field. This action weakens the strength of the magnetic field & thereby increases the motor speed. The weakened field reduces the counter emf generated in the armature; therefore the armature current & the speed increase. Field loss detection must be pro vided for all DC drives to protect against excessive motor speed due to loss of motor field current.

DC drives with motor field control provide coordinated automatic armature & field voltage control for extended speed range & constant-horsepower applications. The motor is armature-voltage-controlled for constant-torque, variable-horsepower operation to base speed, where it s transferred to field control for constant-horsepower, variable-torque operation to motor maximum speed.

AQ: UPS systems commissioning test and inspection procedures

The UPS systems commissioning test and inspection procedures are to conform to;

• BS EN 50091-1:1993 – Specification for Uninterruptible Power Supplies (UPS). General and Safety Requirements, AND

• IEC 62040-3 (Draft Edition – 2) in particular the Efficiency test procedures outlined in its “Annexure-J”.

These procedures to include:

1. Visual Inspection:
a. Visually inspect all equipment for signs of damage or foreign materials.
b. Observe the type of ventilation, the cleanliness of the room, the use of proper signs, and any other safety related factors.

2. Mechanical Inspection:
a. Check all the power connections for tightness.
b. Check all the control wiring terminations and plugs for tightness or proper seating.

3. Electrical Pre-check:
a. Check the DC bus for a possible short circuit.
b. Check input and Bypass power for proper voltages and phase rotation.
c. Check all lamp test functions.

4. Initial UPS Startup:
a. Verify that all the alarms are in a “go” condition.
b. Energize the UPS module and verify the proper DC, walkup, and AC phase on.
c. Check the DC link holding voltage, AC output voltages, and output waveforms.
d. Check the final DC link voltage and Inverter AC output. Adjust if required.
e. Check for the proper synchronization.
f. Check for the voltage difference between the Inverter output and the Bypass source.
g. Perform full-load, step-load, and battery discharge tests using supplier furnished load bank.

AQ: Techniques contribute in control system

1. Any successful methodology is not a simple thing to come by and typically requires a huge commitment in time and money and resources to develop. It will take several generations to hone the methods and supporting tools.

2. Once you get the methods and tools in place, you then face a whole separate challenge of indoctrinating the engineers in the methods.

3. Unique HMI text involves a lot of design effort, implementation, and testing.

Many of the techniques contributed by others in the discussion address faults, but how do you address the “normal” things that can hold up an action such as waiting for a process condition to occur, such as waiting for a level/pressure/temperature to rise above/fall below a threshold or waiting for a part to reach a limit switch?

Some methods allow for a text message that describes each step. When developing these text messages, I focus on what the step’s transition is waiting for, not the actions that take place during the specific step. This helps both the operator to learn the process as well as diagnose what is preventing the machine from advancing to its next step.

I have seen sequencing engines that incorporate a “normal” step time that can be configured for each step and if the timer expires before the normal transition occurs, then you have “hold” condition. While effective, this involves a lot of up-front development time to understand the process and this does not come cheaply (with another nod to John’s big check!).

(Side note on sequential operations: I have used Sequential Function Charts (SFCs/GRAFCET) for over 20 years and find them to be exceptionally well-suited for step-wise operations, both from a development perspective as well as a troubleshooting perspective.)

I have seen these techniques pushed by end users (typically larger companies who have a vested interest in standardization across many sites) as well as OEMs and System Integrators who see these as business advantages in shortening development, startup, and support cycles. Again, these are long-term business investments that require a major commitment to achieve.

AQ: Three Phase Input DC Drive

Controlled bridge rectifiers are not limited to single-phase designs. In most commercial & industrial control systems, AC power is available in three-phase form for maxi mum horsepower & efficiency. Typically six SCRs are connected together, to make a three-phase fully controlled rectifier. This three-phase bridge rectifier circuit has three legs, each phase connected to one of the three phase voltages. It can be seen that the bridge circuit has two halves, the positive half consisting of the SCRs S1, S3, & S5 & the negative half consisting of the SCRs S2, S4, & S6. At any time when there is current flow, one SCR from each half conducts.

The variable DC output voltage from the rectifier sup plies voltage to the motor armature in order to run it at the desired speed. The gate firing angle of the SCRs in the bridge rectifier, along with the maximum positive & negative values of the AC sine wave, determine the value of the motor armature voltage. The motor draws current from the three-phase AC power source in proportion to the amount of mechanical load applied to the motor shaft. Unlike AC drives, bypassing the drive to run the motor is not possible.

Larger-horsepower three-phase drive panels often consist of a power module mounted on a chassis with line fuses & disconnect. This design simplifies mounting & makes connecting power cables easier as well. A three phase input DC drive with the following drive power specifications:

  • Nominal line voltage for three-phase-230/460 V AC
  • Voltage variation-+15%, -10% of nominal
  • Nominal line frequency-50 or 60 cycles per second
  • DC voltage rating 230 V AC line: Armature voltage 240 V DC; field voltage 150 V DC
  • DC voltage rating 460 V AC line: Armature voltage 500 V DC; field voltage 300 V DC