Category: Blog

AQ: DC Drives Parameter Setting / Programming

Programming parameters associated with DC drives are extensive & similar to those used in conjunction with AC drives. An operator’s panel is used for programming of control setup & operating parameters for a DC drive.

SPEED SETPOINT
This signal is derived from a closely regulated fixed voltage source applied to a potentiometer. The potentiometer has the capability of accepting the fixed voltage & dividing it down to any value, For example, 10 to 0 V, depending on where it’s set. A 10-V input to the drive from the speed potentiometer corresponds to maximum motor speed & 0 V corresponds to zero speed. Similarly any speed between zero & maximum can be obtained by adjusting the speed control to the appropriate setting.

SPEED FEEDBACK INFORMATION
In order to “close the loop” & control motor speed accurately, it’s necessary to provide the control with a feed back signal related to motor speed. The standard method of doing this in a simple control is by monitoring the armature voltage & feeding it back into the drive for comparison with the input setpoint signal. The armature voltage feedback system is generally known as a voltage regulated drive.

A second & more accurate method of obtaining the motor speed feedback information is from a motor mounted tachometer. The output of this tachometer is directly related to the speed of the motor. When tachometer feedback is used, the drive is referred to as a speed regulated drive.

In some newer high-performance digital drives, the feedback can come from a motor-mounted encoder that feeds back voltage pulses at a rate related to motor speed.

These pulses are counted & processed digitally & compared to the setpoint, an error signal is produced to regulate the armature voltage & speed.

CURRENT FEEDBACK INFORMATION
The second source of feedback information is obtained by monitoring the motor armature current. This is an accurate indication of the torque required by the load.

The current feedback signal is used to eliminate the speed droop that normally would occur with increased torque load on the motor & to limit the current to a value that will protect the power semiconductors from damage. The current-limiting action of most controls is adjustable & is usually called current limit or torque limit.

MINIMUM SPEED
In most cases, when the controller is initially installed the speed potentiometer can be turned down to its lowest point & the output voltage from the controller will go to zero, causing the motor to stop. There are, how ever, situations where this is not desirable. E.g.,, there are some applications that may need to be kept running at a minimum speed & accelerated up to operating speed as necessary. The typical minimum speed adjustment is from 0 to 30 percent of motor base speed.

MAXIMUM SPEED
The maximum speed adjustment sets the maximum speed attainable. In some cases it’s desirable to limit the motor speed (and machine speed) to something less than would be available at this maximum setting. The maximum adjustment allows this to be done.

IR COMPENSATION
Although a typical DC motor presents a mostly inductive load, there is always a small amount of fixed resistance in the armature circuit. IR compensation is a method used to adjust for the drop in a motor’s speed due to armature resistance. This helps stabilize the motor’s speed from a no-load to full-load condition. IR compensation should be applied only to voltage-regulated drives.

ACCELERATION TIME
As its name implies, the acceleration time adjustment will extend o

AQ: Power industry engineers

The power industry has many tentacles. Energy production is one key subset, the design, manufacture, installation and operation of hydro, nuclear, fossil, renewables, etc is continuing to grow especially in the renewable area. Then there is the transmission of energy which includes the design/manufacture/construction/maintenance of substations, protection and control systems, overhead and underground lines, series and shunt compensation, etc. Last there is the distribution of the energy to the customers at the lower voltages which includes many of the transmission opportunities but introduces other niche areas like power quality, smart metering, distributed generation, etc.

It’s not as simple as stating you want a PHD in the power industry with hands on experience without first knowing the ins and outs of the business. As has been previously mentioned, get your BS in EE with a slant toward power. Get a job in a utility and learn the business top to bottom so you can actually make an intelligent decision on what area of the business floats your boat. Once you know that then pursue an advanced degree in that specific area (the real bonus is most companies will pay for it).

AQ: Systems Development Life-Cycle

Step 1. Initiation
Step 2. System Concept Development
Step 3. Planning
Step 4. Requirements Analysis
Step 5. Design
Step 6. Development
Step 7. Integration and Test
Step 8. Implementation
Step 9. Operation and Maintenance
Step 10.Disposition

There are three major players present in this model; Customer (client), System Integrator, and Machine or device manufacturer.

In many instances, the result of step 4 (Requirements Analysis), is an RFQ for the system implementation has been issued to one or more systems integrators. Upon selecting the system integrator, step 5 (Design) begins. Upon completing step 5 (Design), the system or process flow is defined. One of the major outputs from step 5 are the RFQs for the major functional components of the finished system. Based on the RFQ responses (bids), the Machine or device manufacturers are chosen.

Steps 6, 7, and 8 are where all the individual functional components are integrated. This is where the system integrator makes sure the outputs and feedback between to machines or devices is defined and implemented. Step 8 ends with a full systems functional test in a real manufacturing situation is demonstrated to the customer. This test includes demonstrating all error conditions defined by the requirements document and the systems requirements document. If a specific device or machine fails its respective function it is corrected (programming, wiring, or design) by the manufacturer and the test begins anew.

Each of the scenarios presented is correct. The technician role being presented (customer, integrator, or manufacturer) is not clear. System diagnostics are mandatory and need to be well defined, even in small simple machines. There should be very few and extreme conditions under which the customer’s technician should ever have to dig into a machine’s code to troubleshoot a problem. This condition usually indicates a design or integration oversight.

(You can find a complete description here, http://en.wikipedia.org/wiki/Systems_development_life-cycle)

AQ: DC Drives Field Voltage Control

To control the speed of a DC motor below its base speed, the voltage applied to the armature of the motor is varied while the field voltage is held at its nominal value. To control the speed above its base speed, the armature is supplied with its rated voltage & the field is weakened. For this reason, an additional variable-voltage field regulator is needed for DC drives with field voltage control. Field weakening is the act of reducing the current applied to a DC motor shunt field. This action weakens the strength of the magnetic field & thereby increases the motor speed. The weakened field reduces the counter emf generated in the armature; therefore the armature current & the speed increase. Field loss detection must be pro vided for all DC drives to protect against excessive motor speed due to loss of motor field current.

DC drives with motor field control provide coordinated automatic armature & field voltage control for extended speed range & constant-horsepower applications. The motor is armature-voltage-controlled for constant-torque, variable-horsepower operation to base speed, where it s transferred to field control for constant-horsepower, variable-torque operation to motor maximum speed.

AQ: UPS systems commissioning test and inspection procedures

The UPS systems commissioning test and inspection procedures are to conform to;

• BS EN 50091-1:1993 – Specification for Uninterruptible Power Supplies (UPS). General and Safety Requirements, AND

• IEC 62040-3 (Draft Edition – 2) in particular the Efficiency test procedures outlined in its “Annexure-J”.

These procedures to include:

1. Visual Inspection:
a. Visually inspect all equipment for signs of damage or foreign materials.
b. Observe the type of ventilation, the cleanliness of the room, the use of proper signs, and any other safety related factors.

2. Mechanical Inspection:
a. Check all the power connections for tightness.
b. Check all the control wiring terminations and plugs for tightness or proper seating.

3. Electrical Pre-check:
a. Check the DC bus for a possible short circuit.
b. Check input and Bypass power for proper voltages and phase rotation.
c. Check all lamp test functions.

4. Initial UPS Startup:
a. Verify that all the alarms are in a “go” condition.
b. Energize the UPS module and verify the proper DC, walkup, and AC phase on.
c. Check the DC link holding voltage, AC output voltages, and output waveforms.
d. Check the final DC link voltage and Inverter AC output. Adjust if required.
e. Check for the proper synchronization.
f. Check for the voltage difference between the Inverter output and the Bypass source.
g. Perform full-load, step-load, and battery discharge tests using supplier furnished load bank.

AQ: Techniques contribute in control system

1. Any successful methodology is not a simple thing to come by and typically requires a huge commitment in time and money and resources to develop. It will take several generations to hone the methods and supporting tools.

2. Once you get the methods and tools in place, you then face a whole separate challenge of indoctrinating the engineers in the methods.

3. Unique HMI text involves a lot of design effort, implementation, and testing.

Many of the techniques contributed by others in the discussion address faults, but how do you address the “normal” things that can hold up an action such as waiting for a process condition to occur, such as waiting for a level/pressure/temperature to rise above/fall below a threshold or waiting for a part to reach a limit switch?

Some methods allow for a text message that describes each step. When developing these text messages, I focus on what the step’s transition is waiting for, not the actions that take place during the specific step. This helps both the operator to learn the process as well as diagnose what is preventing the machine from advancing to its next step.

I have seen sequencing engines that incorporate a “normal” step time that can be configured for each step and if the timer expires before the normal transition occurs, then you have “hold” condition. While effective, this involves a lot of up-front development time to understand the process and this does not come cheaply (with another nod to John’s big check!).

(Side note on sequential operations: I have used Sequential Function Charts (SFCs/GRAFCET) for over 20 years and find them to be exceptionally well-suited for step-wise operations, both from a development perspective as well as a troubleshooting perspective.)

I have seen these techniques pushed by end users (typically larger companies who have a vested interest in standardization across many sites) as well as OEMs and System Integrators who see these as business advantages in shortening development, startup, and support cycles. Again, these are long-term business investments that require a major commitment to achieve.

AQ: Three Phase Input DC Drive

Controlled bridge rectifiers are not limited to single-phase designs. In most commercial & industrial control systems, AC power is available in three-phase form for maxi mum horsepower & efficiency. Typically six SCRs are connected together, to make a three-phase fully controlled rectifier. This three-phase bridge rectifier circuit has three legs, each phase connected to one of the three phase voltages. It can be seen that the bridge circuit has two halves, the positive half consisting of the SCRs S1, S3, & S5 & the negative half consisting of the SCRs S2, S4, & S6. At any time when there is current flow, one SCR from each half conducts.

The variable DC output voltage from the rectifier sup plies voltage to the motor armature in order to run it at the desired speed. The gate firing angle of the SCRs in the bridge rectifier, along with the maximum positive & negative values of the AC sine wave, determine the value of the motor armature voltage. The motor draws current from the three-phase AC power source in proportion to the amount of mechanical load applied to the motor shaft. Unlike AC drives, bypassing the drive to run the motor is not possible.

Larger-horsepower three-phase drive panels often consist of a power module mounted on a chassis with line fuses & disconnect. This design simplifies mounting & makes connecting power cables easier as well. A three phase input DC drive with the following drive power specifications:

  • Nominal line voltage for three-phase-230/460 V AC
  • Voltage variation-+15%, -10% of nominal
  • Nominal line frequency-50 or 60 cycles per second
  • DC voltage rating 230 V AC line: Armature voltage 240 V DC; field voltage 150 V DC
  • DC voltage rating 460 V AC line: Armature voltage 500 V DC; field voltage 300 V DC

AQ: Why your project failed?

I have contracted with lots of different groups and moving within the same company to save failed projects or project in trouble or impossible to implement and helped these groups to achieve company goal. What I have noticed is that less the managers or groups know less they realize more knowledge or experience can help them. Less they know, less they understand they need help because they don’t know what they need. They think they are just fine until it is too late and a group or company goes under because of it.

I give you an example of one of the project I worked on at Nortel. I was assigned to write project specification for a product working with a director group with 100 designers and testers. During my research to get information to write the product specification I discover deficiency in the hardware they wanted to use that would cause the system reliability and availability unacceptable to the customer and did not meet customer requirement. I proposed design change in one of the interface card and firmware used in the system. The management did not agree with me on this item so I refused to write the specification the way they want it to not expose this deficiency. We had a large meeting with the president of the company with 20 people in that meeting looking at two different presentation to see if they need to change direction or stay on course and move me out of the way to another project activity. I am not the greatest in politics and making things look good when they are not.

The result was that I was moved to different project for 1 year implementing and releasing one more product that made the company lots of money. After a year development, they complete the project and released it to the customer. The customer starts validating the product and had lots of the test cases failing in the area that I proposed to change.
This was a large project and lots of money involve. The customer rejected the product and they went back on the drawing board after getting lots of this equipment on order for this project. The management came back to me and one of my team members to come back to the team and help.

Me and my team member both having experience over 15 years at that point came back and have a solution designing a new complex interface card with microcode firmware and some software to save the project. I and he had to work for 4 months for day and night having design review between two of us at 3 am in the cafeteria to get it done (defining specification to validated working product).

This project was completed and customer accepted this solution. The director group was dismantled and all people in the group were laid off and absolved in other groups in the company and some in the same group. The management groups were smart people with good intention, they were with software background and good intention for the project. They just did not have the knowledge and background to manage the system and hardware level because of lake of knowledge and experience in that area.

You see this in lots of companies when a software designer or manager is successful in their area, they get promoted and manage groups that are out of their area and lots of time they destroy groups or project because of not having the background to identify good or bad direction to go. You will always have engineers to not agree with each other and managements have to make decision to go one way or another. The wrong decision in these cases can destroy a project or company. Not all engineers can present a case in 1 hour to sell you their point of view, Remember they are not lawyer or sales man, they are engineers. So what do you do, Follow the sales man or lawyer to save your project or the reason to drive your decision and if you don’t have the knowledge or experience to lesson to the reason then you will make the wrong decision.

AQ: Single Phase Input DC Drive

Armature voltage-controlled DC drives are constant torque drives, capable of rated motor torque at any speed up to rated motor base speed. Fully controlled rectifier circuits are built with SCRs. The SCRs rectify the supply voltage (changing the voltage from AC to DC) as well as controlling the output DC voltage level. In this circuit, silicon controlled rectifiers S1 & S3 are triggered into conduction on the positive half of the input waveform & S2 & S4 on the negative half. Freewheeling diode D (also called a suppressor diode) is connected across the armature to provide a path for release of energy stored in the armature when the applied voltage drops to zero. A separate diode bridge rectifier is used to convert the alternating current to a constant direct current required for the field circuit.

Single-phase controlled bridge rectifiers are commonly used in the smaller-horsepower DC drives. The terminal diagram shows the input & output power & control terminations available for use with the drive. Features include:

  • Speed or torque control
  • Tachometer input
  • Fused input
  • Speed or current monitoring (0-10 V DC or 4-20 mA)

AQ: What if

Many years ago we used to call this the “what ifs?”. Part of the design phase is when we model what we think the system is meant to do. Just as important is how the system is meant to react when things are not going well, the abnormal situations or what ifs?

Your client will tell you how their machine or process works, well he will describe how he thinks it works. This is OK as a starting point but we need to consider the scenarios of “what If” something goes wrong? Scenarios is also a good word as scenarios paint a situation that can be described to the customer for his comment.

For example on a compressor control project what if the lube oil pump fails on the compressor, how do we alarm this to the Operator, should we trip the compressor or do we start the back-up oil pump (if there is one). As you look at the system you can pick out various components and generate likely scenarios that you can discuss with the client. Using this approach gives more of a real world feel to your client meetings that are likely to generate a deeper insight into how the system is meant to work.

All scenarios do not have to be centered around abnormal situations but can also relate to things that need to be considered as part of normal operation. For example we might look at how a duty/standby pump system works? One scenario might relate to duty pump failure but another scenario might consider rotating the duty and standby pumps to even out wear and tear? You might also have manual mode and auto mode scenarios to consider?

What you have to remember is that most clients are not control systems experts. They might and probably will struggle with flow charts or any other pseudo code expression type formats that describe how you think the client’s system is meant to work? You have to tailor your approach to match your audience and that is also very important when you produce your documentation, you do not want to lose valuable information just because the client doesn’t fully understand what you are trying to tell him? Also make sure that you spend time with your client. Walk the client through your design, do this face to face as much as possible and do it more than once! Getting feedback on a regular basis helps to eliminate the dreaded word “REWORK”! Also taking this partnership approach builds a good relationship with your client.

For the machine builders your client might be in your own company? Remember same company or not they are your client and your success in no small way depends on your relationship with them.

Add the modes of operation and abnormal situations to your system model and develop the methods of how you will flag these situations to the Operator and Maintenance Engineer. Alarm Management is dealt with by EEMUA 191. If you do nothing else then read this document it will help you to set up alarm workshops, alarm reviews, alarm prioritization and rationalization and how to develop an effective alarm management structure for your system.