AQ: DC Drives Basic Operation Principles
DC drives vary the speed of DC motors with greater efficiency & speed regulation than resistor control circuits. Since the speed of a DC motor is directly proportional to armature voltage & inversely proportional to field current, either armature voltage or field current can be used to control speed. To change the direction of rotation of a DC motor, either the armature polarity can be reversed, or the field polarity can be reversed.
The block diagram of a DC drive system made up of a DC motor & an electronic drive controller. The shunt motor is constructed with armature & field windings. A common classification of DC motors is by the type of field excitation winding. Shunt wound DC motors are the most commonly used type for adjustable-speed control. In most instances the shunt field winding is excited, as shown, with a constant-level voltage from the controller. The SCR (silicon controller rectifier), also known as thyristor, of the power conversion section converts the fixed-voltage alternating current (AC) of the power source to an adjustable-voltage, controlled direct current (DC) output which is applied to the armature of a DC motor. Speed control is achieved by regulating the armature voltage to the motor. Motor speed is directly proportional to the voltage applied to the armature.
The main function of a DC drive is to convert the fixed applied AC voltage into a variable rectified DC voltage.
SCR switching semiconductors provide a convenient method of accomplishing this. They provide a controllable power output by phase angle control. The firing angle, or point in time where the SCR is triggered into conduction, is synchronized with the phase rotation of the AC power source. The amount of rectified DC voltage is controlled by timing the input pulse current to the gate. Applying gate current near the beginning of the sine-wave cycle results in a higher aver age voltage applied to the motor armature. Gate current applied later in the cycle results in a lower average DC output voltage. The effect is similar to a very high speed switch, capable of being turned on & off at an infinite number of points within each half-cycle. This occurs at a rate of 60 times a second on a 60-Hz line, to deliver a precise amount of power to the motor.