Category: Blog

AQ: Special Protection System Advantages and Disadvantages

Quite a few yrs. ago around 1988, I was a Protection and Control Engineer at a large utility in the SE. We were doing our planning to bring the final unit of a large 4 unit plant on line, when it was discovered that we could encounter some unusual instability scenarios. The funny thing was that with all units on-line and above a certain MW output, all that would need to occur would be opening of a remote 500kV breaker on one of the particular lines and the event could trigger, eventually bringing ALL 4 units at the plant out-of-step and tripping off all of the generation in just a few minutes (3600 MW).

The studies were performed numerous times by internal and external experts but the results were always the same. The key problem seemed to be the existing network configuration of 4 units and only 3 transmission lines. Adding a 4th 500kV line from the plant seemed to cure the problem under all conditions, including close in 3 phase faults with breaker failure. Unfortunately, the cost and timeline to build a new t-line was a real challenge!

In order to proceed with commissioning the 4th unit and remediating any scenarios for tripping all generation, a Special Protection System (SPS) was developed. A transfer trip channel was installed at the remote substation, keying on the breaker contact opening. At the plant, a Unit Trip scheme was installed that had a MW meter supervising tripping of any one unit selected by the plant operator (U1-U2-U3-U4). If all units were on line and generation was above 2500 MW (margin of safety added), then a receipt of remote breaker opening would trip the selected unit to avoid having all units cascade into out-of-step condition.

Advantages: Clearly, this Special Protection System saved the day, and bought time until an additional line was added 4 years later.

Disadvantages: The downside was the challenge of installing and testing such a complicated scheme with the potential for mis-operation. I don’t recall any mis-operations occurring, but it was still a bit “dicey”. I have been at that same plant during a full load unit trip (Generator differential) and it was an “exciting” experience to say the least! While I did recommend that we conduct a “live test” to see what would really happen and perhaps test our system BLACK START procedures, this suggestion was not well received by management (LOL).

This was my only encounter with such a special protection system scheme in my 35 years of utility work, but it was very interesting to be involved with this project.

AQ: Resistance to ground

Resistance to ground is greatly influenced by the ambient conditions and the state of the motor when tested.

Factors Affecting Insulation Measurement:
First, it is important to understand that we are measuring a motor circuit. We are connecting our test instrument at a point where we can measure the majority of the de-energized circuit. As such, we do not necessarily know where an insulation anomaly is located when identified. We also have the motor circuit potentially exposed to differing environments. Ambient temperature and humidity can have a significant effect on any insulation measurements. When a motor circuit’s insulation is tested is also a major variable. Testing a motor circuit immediately after shut down will most likely yield good results. This is because the motor is warm and dry. Testing a motor after it has been shut down for a while may indicate insulation problems, but if the motor is allowed to reach ambient temperature, the insulation integrity may appear normal. This is because while cooling, particularly in somewhat humid conditions, moisture (condensation) will accumulate within the motor and lessen ground resistance. Is this a problem? Yes, particularly if starting from a partially cooled state. Most motor failures occur during starting. This is when the insulation is exposed to the most stresses. If your motors are only down for a few hours at a time, then this is when insulation testing should be conducted.

When conducting insulation testing, the most important consideration is consistency. Always test at the same location, use the same test voltage, perform the test for the same amount of time, and use the same test instrument. It is also important to note the motor temperature, ambient temperature, and relative humidity. It is also helpful to compare like motors and the motors that are operating within the same environment.

Insulation testing is somewhat ambiguous. Although there are reference standards, they cannot be rigidly followed because they do not factor in all of the potential variables that may be encountered. Temperature is the biggest variable. Temperature of the motor and the ambient temperature are of primary concern. One method to help negate the influence of temperature is performance of a “Timed Resistance Test.” This testing is comprised of “Dielectric Absorption,” “Polarization Index,” and “Step Voltage” testing. Dielectric Absorption is a 1 minute test. The resultant values at 30 seconds and 1 minute are logged and the ratio of the 30 second value divided into the 1 minute value, is a relative indicator of insulation integrity. A polarization index is a 10 minute test with the resultant ratio derived from the 1 minute value divided into the 10 minute value.

So, if ground resistance is low after prolonged shutdown and it is at ambient conditions, then you probably have an insulation issue. Conditioning of the insulation may be required. A motor shop can perform a “Clean, Dip and Bake.” process which will prolong the motor longevity. If the motor is several years old you may want to HiPot the insulation but if you are not using one of the newer units that automatically shut down upon a jump in current, you may cause insulation failure and that would necessitate a rewind.

AQ: Negative sequence

Negative sequence will not cause a physical rotation. This component creates a field which, though not strong enough, tries to counter the primary field, An increase in this component will cause the motor to overheat due to the opposition. a physical rotation is not likely to occur.

Negative sequence currents are produced because of the unbalanced currents in the power system. Flow of negative sequence currents in electrical machines (generators and motors) are undesirable as these currents generates high temperatures in very short time. The negative sequence component has a phase sequence opposite to that of the motor and represents the amount of unbalance in the feeder. Unbalanced currents will generate negative sequence components which in turn produces a reverse rotating filed (opposite to the synchronous rotating filed normally induces emf in to the rotor windings) in the air gap between the stator and rotor of the machines. This reverse rotating magnetic field rotates at synchronous speeds but in opposite direction to the rotor of the machine. This component does not produce useful power, however by being present it contributes to the losses and causes temperature rise. This heating effect in turn results in the loss of mechanical integrity or insulation failures in electrical machines within seconds. Therefore it is undeniable to operate the machine during unbalanced condition when negative sequence currents flows in the rotor and motor to be protected. Phase reversal will make the motor run in the opposite direction and can be very dangerous, resulting in severe damage to gear boxes and hazard to operating personnel.

AQ: Synchronous generator operating frequency

When synchronous generators (alternators) are connected in parallel with each other on an AC grid, they are all operating at a speed that is directly proportional to the frequency of the AC grid. No generator can go faster or slower than the speed which is proportional to the frequency.

That is, when a synchronous generator and its prime mover is operated in parallel with other synchronous generators and their prime movers, the speed of all of the generator rotors (and hence their prime movers if directly coupled to the generator rotors) is fixed by the frequency of the grid. If the grid frequency goes up, the speed of all the generator rotors goes up at the same time. Conversely, if the grid frequency goes down, the speed of all the generator rotors goes down at the same time. It is the job of the grid/system operators to control the amount of generation so that it exactly matches the load on the system so that the frequency remains relatively constant.

Isolated or is landed generators that are not in parallel with other generators have an added limitation in that keeping exactly 50Hz is somewhat difficult, or puts too much demand on controlling/governing systems. In such environments it is normal to accept some small deviation from the nominal frequency.

The vast majority of power for industry is supplied by large rotating AC generators turning in synch with the frequency of the grid. The frequency of all these generators will be identical and is tied directly to the RPM of the generators themselves. If there is sufficient power in the generators then the frequency can be maintained at the desired rate (i.e. 50Hz or 60Hz depending on the locale).

An increase in the power load is accompanied by a concurrent increase in the power supplied to the generators, generally by the governors automatically opening a steam or gas inlet valve to supply more power to the turbine. However, if there is not sufficient power, even for a brief period of time, then generator RPM and the frequency drops.

By operating transformers at higher frequencies, they can be physically more compact because a given core is able to transfer more power without reaching saturation and fewer turns are needed to achieve the same impedance. However, properties such as core loss and conductor skin effect also increase with frequency. Aircraft and military equipment employ 400 Hz power supplies which reduce core and winding weight. Operation of a transformer at its designed voltage but at a higher frequency than intended will lead to reduced magnetizing current. At a lower frequency, the magnetizing current will increase. Operation of a transformer at other than its design frequency may require assessment of voltages, losses, and cooling to establish if safe operation is practical. For example, transformers may need to be equipped with ‘volts per hertz’ over-excitation relays to protect the transformer from overvoltage at higher than rated frequency.

AQ: Solar power

On a purely theoretical level and ignoring interrelated economics and energy usage, it makes sense to charge EVs during the day – though never in non-distributed environments, IMO.

In reality, and the reality for likely the rest of my life, it makes more economic and particulate emissions sense to distribute solar power during the day to decrease, and ultimately decommission, fossil fuel sources used for peak demand supply that occurs during the day.

Thus, using solar output distributed to offset the dirtiest, most expensive and most distribution grid loading power enhances and optimizes the value and worth of that solar generated power – both economically and ecologically. Attempting, therefore, to do all of ones’ EV charging off peak is the optimal solution until the mix of energy sources changes dramatically – likely a 20 plus year process even in the most environmentally friendly “energy generation mix” regions of the world. Even if one charges during “peak”, it is better to simply charge from the grid as the distributed energy is allowed to go to areas of peak demand. Again, for at least my lifetime, I don’t project a more optimal use of that generation even assuming the archaic state of most “grids” persist.

Right now, even for a 1 story commercial building, solar cannot supply the energy needs used in the office, much less a manufacturing facility. In fact, it can normally only supply 1/3 or less for the most energy and resource intensive commercial environment in a UV intense region (and that is quite an optimistic calculation, more likely 1/5th). Once you get to two or more stories on the building, one is not even close. On a modest tower with a tower parking garage, the footprint is likely to small to even generate the needs on a theoretical basis. Distributing the energy to location of greatest needs will allow us to dial down and decommission peak sources, which again are the dirtiest and most wasteful.

At some point, we will hit a new equilibrium where the energy generation mix is much cleaner, solar generation specifically is much more efficient, and peak power generation is handled more efficiently and ecologically cleaner. I still believe, however, that distributed power is better than “off grid” type of scenarios as it allows the energy to go where it is being demanded at the moment, decreasing the need for redundant sourcing. And, even in the cleanest energy generation mix, redundancy means building more of something and is by definition more energy wasteful and ecologically wasteful than a scenario where the redundancy buffer that is required is lesser.

Much of this type of debate reminds me of the consumer sort recycle versus the destination sort recycle debate. Even with the advances in trash collection and recycling processes, 20 years later we are suboptimizing the recycling process. Much of the reason for that is the “style” statement, making people feel like they are contributing by sorting themselves. It may make some people “feel” better by imagining “independent” off grid or semi off grid solutions. In reality, however, we live in an interconnected world where “sharing” or distributing solutions to leverage scale and minimize redundancies is far more advantageous, economic, and a faster route to a solution to both particulate emissions issues and energy independence for groups of people.

AQ: Variable frequency drive saves energy on fans

Like pumps, fans consume significant electrical energy while serving several applications. In many plants, the VFDs (variable frequency drives) of fans together account for 50% to 60% of the total electricity used. Centrifugal fans are the most common but some applications also use axial fans and positive-displacement blowers. The following steps help identify optimization opportunities in systems that consume substantial energy running the fan with VFDs.

Step 1: Install variable frequency drive on partially loaded fans, where applicable. Any fan that is throttled at the inlet or outlet may offer an opportunity to save energy. Most combustion-air-supply fans for boilers and furnaces are operated at partial loads compared to their design capacities. Some boilers and furnaces also rely on an induced-draft fan near their stack; it must be dampened to maintain the balanced draft during normal operation. Installing VFDs on these fans is worthy of consideration.

Similar to centrifugal pump operation, the affinity law applies here. Because constant-speed motors consume the same amount of energy regardless of damper position, using dampers to maintain the pressure or flow is an inefficient way to control fan operation.

Step 2: Switch to inlet vane dampers. These dampers are slightly more efficient than discharge dampers. When a VFD can’t be installed to control fan operation, shifting to inlet vane control could provide marginal energy savings.

Step 3: Replace the motor on heavily throttled fans with a lower speed one, if applicable. Smaller capacity fans with high-speed motor VFDs operate between 25% and 50% of their design capacity. Installing a low-speed motor VFD could save considerable energy.

For example, a 2,900-rpm motor drove a plant’s primary combustion air fan with the discharge side damper throttled to about 75–80%. Installing a VFD on this motor would save considerable energy, but we recommended switching to a standard 1,450-rpm motor. This was implemented immediately, as 1,450-rpm motors are readily available. With the lower-speed motor, the damper can be left at near 90% open; the fan’s power consumption dropped to less than 50% of the previous level.

Step 4: Control the speed when multiple fans operate together. Fans consume a significant amount of energy in industrial cooling and ventilation systems. Supply fans of HVAC systems are good candidates for speed control by variable frequency drives, if not already present.

Step 5: Switch off ventilation fans when requirements drop. Ventilation systems usually run a single large centrifugal fan or several axial exhaust fans. A close look at their operation may indicate these fans could be optimized depending upon the actual ventilation needs of the building they serve.

Recently, we surveyed a medium-sized industrial facility where 26 axial-type exhaust fans were installed on the roof of one building. All fans were operating continuously, even though the building had many side wall openings and not much heat generated inside. To better conserve energy, we suggested the 26 fans be divided into four groups with variable frequency drives controlled for each group. As a result, energy consumption for the fans dropped by about 50%, as only the required fan groups now are switched on.

At another industrial site, the exhaust fan of a paint booth ran continuously but paint spraying was scheduled only about 50% of the time. Modifying fan operation with variable frequency drive and delayed sequencing saved energy.

Pumps and fans are the most common energy-consuming devices

AQ: Can I operate a 50Hz transformer at 60Hz power supply?

Well first let get one thing straight for transformers: the higher the line frequency, the lower the core (iron) losses! The core power loss are proportional to kf*B^2 approximately for any machine, dynamic or static. But transformers are self-excited static machines, meaning the flux density B is reverse proportional to the line frequency, therefore Pcoreloss = kB^2*f=k*(1/f)^2*f=k/f… so the higher f, the lower the losses. However, increasing the frequency also increases the magnetizing inductance – lowering the magnetizing current. For if you increase the frequency you may want to increase the voltage. But of course this is not usually practical, as line voltage of 60Hz systems is usually lower than those of 50Hz systems. So operating a 50Hz motor at 60Hz should be safe, but may result in higher voltage drop because of lower magnetizing current and because of higher leakage inductance (the series inductance).

It is true that the higher the frequency, the higher the hysteresis (and eddy current) losses will be. But is it a common misconception to assume higher power losses when frequency increases in a transformer. Simply because the hysteresis losses depends not only on frequency, but on the max magnetic flux density as well (Bmax^2). The flux density is reversely proportional to the line frequency, which eventually causes lower core losses as you raise the frequency. This holds true for low and mid frequency ranges. For higher frequencies, skin effect and eddy currents dominates, so the picture may be different. However, iron core transformers do not operate in such high frequencies. We use ferrite core instead. In a practical transformer model, the core losses are represented by a parallel resistor (Rc). The resistor’s value is linearly dependent of the line frequency (Rc=k*f), and the core losses are given by Pc=U^2/Rc… Of course this model is limited to mid-low frequencies…

AQ: Electrical drives for off-highway vehicles

I’ve seen some attempt of electrical driven prototypes in the field, but is still not an enough big sector that let you find specific literature. Excluding the large dumpers for mining, probably the only machine that is built in series is D7E from CAT.

One of largest engineering challenge that you will face on a similar application, is the cooling to the power electronic. You can consider that you will have to dissipate 3-5% of the power that your driver is processing and the max temperature of IGBT’s is not so far from the max temperature in that your vehicle can operate. A small temperature delta, mean a large heat exchanger and/or pretty high speed of air through it. (That with all the problems related to that). A possible solution is liquid cool the IGBT’s mounting them on the aluminum plate. You can’t use the engine cooling fluid because it too warm, but you may can use hydraulic oil (that should never get warmer of 55C).

If you are thinking to expand some gas from the AC, please take in account the possible condensation issues (your voltage on the DC bus can arrive around 800V when the vehicle is breaking, you do not want condensation around). Using SR motors is opening another challenge. For take max advantage of the technology, you want the motor spinning pretty fast (motor get smaller for same size of rotor and with that design, no problems retaining magnets). That means use high ratio gears. In off road vehicle are often used planetary gears because they are compact and cheap. As soon you rise the input speed, the efficiency of those kind of gears drop because you incur in hydrodynamic loss (for a series of problems that are connected to the level of oil that you need to keep in the gear housing). Probably if you are using an SR motor, you want consider to use an angular stage like first reduction after the motor.

I’m not too sure if I would use a battery like energy storage. Batteries take time for convert from electrical to chemical. Most of the braking will happen in a short time so you will end up burning most of the regenerated energy trough a braking resistor (the DC bus can’t go up to infinite about voltage). If you are driving a dozer that has a very low efficiency (most of the vehicle kinetic energy will be burnt in the tracks etc. and very little will arrive to the SR motor to be regenerate), probably the regeneration is not too important, on other vehicle is maybe more important so look to capacitors or flywheels for storage is probably more appropriate.