Category: Blog

AQ: India renewable energy

Refer to the REI seminar, wherein Government of India representative stated that the VGF payment is spread over 5 year period.

1) Any profit Making Company, must have had the benefits from the Government (subsidies etc) / Eco system.

The profit must be taxed for the improvement of the Economy of the Country.

2) Present renewable energy policy is allowing these profit making companies to avoid paying taxes, and own the assets due to such FREE EQUITY, which belongs to the Government, thus Accelerated Depreciation (AD) is a killer of Economy.

Thus, we are unable to develop the NICHE technology as unrelated industries are owning the project due to avoidance of paying taxes and just to own the assets due to such loop hole in the policy, later making an early exit to make quick money without serving the Nation.

AD promotion is not a level playing field apart from Tax loss to the Government.

3) The Tax thus saved, is again allowed to earn 19 to 24% Return On Equity (ROE), which is very unfair (actually this should have been disallowed to have rs.3/kwh less tariff), due to a fact that, this is public money, hence, should not be allowed to have such wind fall gains.

4) By loading ROE, showing high CAPEX and taking back more than 30% project equity, getting EXIM Bank or such low cost funding to reduce the interest burden, but, Tariff claimed of rs.18 or 15 or 10/kwh is once again a kind of Tariff subsidy, thus, a common man is paying more money for RE power tariff, which is a great killer of economy and making people poor.

5) Viability Gap funding in addition to AD will be an Economic suicide as a project promoter will be allowed to take back 60 to 70% of project cost without paying tax on profit earned !!

This is likely encourage poor equipment buying / its maintenance due to such immediate undue / windfall gains.

6) Despite taking such huge wind fall gains, again these project promoters will be allowed to sell the project to others, to make further wind fall gain to make few existing companies to get undue benefits due to such wrong policy guidelines, despite many representations made to the Government, which states that they have go clearance from Finance Ministry to further ruin the Economy !!

AQ: Current transformer selection

When you want to select current transformer with appropriate rated power for your power system, you need to consider that value of rated power of selected current transformer should be higher from sum of values of load and Joules’ losses which are a consequence of flow current through conductors which connect current transformer with relay.

So, if you have a long distance between current transformer and relay, then you need to consider one of two following manners for solving this problem:
1. replacing existing current transformer with current transformer with higher power,
2. replacing existing conductors with conductors with lower cross-section.

This solution is a consequence of necessity for reducing of Joules’ losses which are a consequence of flow current through conductors which connect current transformer with relay. If you have conductors whose value of rated current is 5A, you will have Joules’ losses P=R*I^2=R*5^2=25*R. Otherwise, if you have conductors whose value of rated current is 1A, you will have Joules’ losses P=R*I^2=R*1^2=R.
On this way, Joules’ losses in your selected conductors will be reduced 25 times and selected current transformer will be unloaded by reducing additional load.

AQ: Variable Frequency Drive Load Types

The potential for variable frequency drive (VFD) energy saving from slowing down the load depend on the characteristics of the load being driven. There are three main types of load: variable torque, constant torque and constant power.

Variable torque load
Variable torque loads are typical of centrifugal fans and pumps and have the largest energy saving potential controlled by variable frequency drives. They are governed by the Affinity Laws which describe the relationship between the speed and other variables.
Variable torque load

The change in flow varies in proportion to the change in speed:

Q1/Q2 = (N1/N2)

The change in head (pressure) varies in proportion to the change in speed squared:

H1/H2 = (N1/N2)2

The change in power varies in proportion to the change in speed cubed:

P1/P2 = (N1/N2)3

Where Q = volumetric flow, H = head (pressure), P = power, N = speed (rpm)

The power – speed relationship is also referred to as the ‘Cube Law’. When controlling the flow by reducing the speed of the fan or pump a relatively small speed change will result in a large reduction in power absorbed.

Constant torque load
Typical constant torque applications controlled by variable frequency drives include conveyors, agitators, crushers, surface winders and positive displacement pumps and air compressors.
Constant torque load

On constant torque loads the torque does not vary with speed and the power absorbed is directly proportional to the speed, this means that the power consumed will be in direct proportion to the useful work done, for example, a 50% speed reduction will result in 50% less power being consumed.

Although the variable frequency drive energy savings from speed reduction are not as large as that with variable torque loads, they are still worth investigating as halving the speed can halve the energy consumed.

Constant power load
On constant power loads the power absorbed is constant whilst the torque is inversely proportional to the speed. There are rarely any energy savings opportunities from a reduction in speed. Examples of constant power applications include center winders and machine tools.
Constant power load

AQ: What is SynRM motor?

Many others thirty years ago, synchronous reluctance motors (SynRM) have finally replacing the traditional AC induction motors in the industry. ABB has claimed achieving IE4 efficiency with SynRM, a great improvement from IE2 efficiency with the traditional induction motors, for the same motor envelope size and input power.

A SynRM is a true AC machine with or without permanent magnets on the rotor. It is totally different from the closed-loop controlled, permanent magnet brushless DC machines (BLDC) in that one would never be able to get rid of torque ripples as that have been achieved in commonly used BLDC machines.

The difference is on the rotor: copper or aluminum bars for inductance motor (squirrel cage after joining end disks) vs. flux barriers (air pockets) in SynRM. The SynRM rotor can be further enhanced by inserting permanent magnets in the air pockets for a machines called PM assisted SynRM. High efficiency is achieved for two reasons: 1) no copper loss due to the lack of rotor bars and end disks; and 2) high inductance difference between d- and q-axes (Ld-Lq) because of flux barriers and motor torque linearly proportional to (Ld-Lq).

In comparison with the traditional AC induction motor, a SynRM motor needs a frequency inverter and when permanent magnets are present in the rotor, a rotor position feedback sensor. The drawbacks of SynRM are the motor torque ripples due to switching operation, inherited small air gap, etc.

AQ: Calculate Capacitors Power

In general, to calculate the necessary Power of Capacitors, we can use the following formula:

Qc = P ( tgφ1 – tgφ2 )

where :
– Qc : the Power of Capacitors.
– P : the total Power of Loads that are running during normal working.
– tgφ1 : the tangent of φ1 ( the angel between current & voltage before compensation )
– tgφ2 : the tangent of φ2 ( the angel between current & voltage after compensation )

In all cases, we should take into consideration the following points :
1- It will be better to oversize the calculated Qc by ” 10 to 15% “.

2- Be careful when compensate the PF of a Motor to avoid the Over-excitation case, but we can verify it by using the following formula : Qc (motor) = 2 x P (1 – Cos φ ), where :
– P : the Motor’s Power.
– Cos φ : the PF of the motor before compensation.

3- After calculation of Qc, the choosing of Capacitors type will be done according to the Harmonic Distortion percentage. Noting that in some case where the Harmonic Distortion percentage is high, we should use ” Detuned Reactors ” with Capacitors, and when this percentage is too high, we can’t install the Capacitors before minimizing or eliminating the harmonics that their percentages are too high.

AQ: The noise of variable frequency drive fed motors

The rotating electrical machines have basically three noise sources:

  • The ventilation system
  • The rolling bearings
  • Electromagnetic excitation

Bearings in perfect conditions produce practically despicable noise, in comparison with other sources of the noise emitted by the motor.

In motors fed by sinusoidal supply, especially those with reduced pole numbers (higher speeds), the main source of noise is the ventilation system. On the other hand, in motors of higher polarities and lower operation speeds often stands out the electromagnetic noise.

However, in variable frequency drive (VFD) systems, especially at low operating speeds when ventilation is reduced, the electromagnetically excited noise can be the main source of noise whatever the motor polarity, owing to the harmonic content of the voltage.
Higher switching frequencies tend to reduce the magnetically excited noise of the motor.

Criteria regarding the noise emitted by motors on variable frequency drive applications
Results of laboratory tests (4 point measurements accomplished in semi-anechoic acoustic chamber with the variable frequency drive out of the room) realized with several motors and variable frequency drives using different switching frequencies have shown that the three phase induction motors, when fed by VFDs and operating at base speed (typically 50 or 60 Hz), present and increment on the sound pressure level of 11 dB(A) at most.

Considerations about the noise of variable frequency drive fed motors

  • NEMA MG1 Part 30 – the sound level is dependent upon the construction of the motor, the number of poles, the pulse pattern and pulse frequency, and the fundamental frequency and resulting speed of the motor. The response frequencies of the driven equipment should also be considered. Sound levels produced thus will be higher than published values when operated above rated speed. At certain frequencies mechanical resonance or magnetic noise may cause a significant increase in sound levels, while a change in frequency and/or voltage may reduce the sound level. Experience has shown that (…) an increase of up to 5 to 15 dB(A) can occur at rated frequency in the case when motors are used with PWM controls. For other frequencies the noise levels may be higher.
  • IEC 60034-17 – due to harmonics the excitation mechanism for magnetic noise becomes more complex than for operation on a sinusoidal supply. (…) In particular, resonance may occur at some points in the speed range. (…) According to experience the increase at constant flux is likely to be in the range 1 to 15 dB(A).
  • IEC 60034-25 – the variable frequency drive and its function creates three variables which directly affect emitted noise: changes in rotational speed, which influence bearings and lubrication, ventilation and any other features that are affected by temperature changes; motor power supply frequency and harmonic content which have a large effect on the magnetic noise excited in the stator core and, to a lesser extent, on the bearing noise; and torsional oscillations due to the interaction of waves of different frequencies of the magnetic field in the motor air gap. (…) The increment of noise of motors supplied from PWM controlled variable frequency drives compared with the same motor supplied from a sinusoidal supply is relatively small (a few dB(A) only) when the switching frequency is above about 3 kHz. For lower switching frequencies, the noise increase may be tremendous (up to 15 dB(A) by experience). In some circumstances, it may be necessary to create “skip bands” in the operating speed range in order

AQ: Can I operate a 50Hz transformer at 60Hz power supply?

Well first let get one thing straight for transformers: the higher the line frequency, the lower the core (iron) losses! The core power loss are proportional to kf*B^2 approximately for any machine, dynamic or static. But transformers are self-excited static machines, meaning the flux density B is reverse proportional to the line frequency, therefore Pcoreloss = kB^2*f=k*(1/f)^2*f=k/f… so the higher f, the lower the losses. However, increasing the frequency also increases the magnetizing inductance – lowering the magnetizing current. For if you increase the frequency you may want to increase the voltage. But of course this is not usually practical, as line voltage of 60Hz systems is usually lower than those of 50Hz systems. So operating a 50Hz motor at 60Hz should be safe, but may result in higher voltage drop because of lower magnetizing current and because of higher leakage inductance (the series inductance).

It is true that the higher the frequency, the higher the hysteresis (and eddy current) losses will be. But is it a common misconception to assume higher power losses when frequency increases in a transformer. Simply because the hysteresis losses depends not only on frequency, but on the max magnetic flux density as well (Bmax^2). The flux density is reversely proportional to the line frequency, which eventually causes lower core losses as you raise the frequency. This holds true for low and mid frequency ranges. For higher frequencies, skin effect and eddy currents dominates, so the picture may be different. However, iron core transformers do not operate in such high frequencies. We use ferrite core instead. In a practical transformer model, the core losses are represented by a parallel resistor (Rc). The resistor’s value is linearly dependent of the line frequency (Rc=k*f), and the core losses are given by Pc=U^2/Rc… Of course this model is limited to mid-low frequencies…

AQ: Electrical drives for off-highway vehicles

I’ve seen some attempt of electrical driven prototypes in the field, but is still not an enough big sector that let you find specific literature. Excluding the large dumpers for mining, probably the only machine that is built in series is D7E from CAT.

One of largest engineering challenge that you will face on a similar application, is the cooling to the power electronic. You can consider that you will have to dissipate 3-5% of the power that your driver is processing and the max temperature of IGBT’s is not so far from the max temperature in that your vehicle can operate. A small temperature delta, mean a large heat exchanger and/or pretty high speed of air through it. (That with all the problems related to that). A possible solution is liquid cool the IGBT’s mounting them on the aluminum plate. You can’t use the engine cooling fluid because it too warm, but you may can use hydraulic oil (that should never get warmer of 55C).

If you are thinking to expand some gas from the AC, please take in account the possible condensation issues (your voltage on the DC bus can arrive around 800V when the vehicle is breaking, you do not want condensation around). Using SR motors is opening another challenge. For take max advantage of the technology, you want the motor spinning pretty fast (motor get smaller for same size of rotor and with that design, no problems retaining magnets). That means use high ratio gears. In off road vehicle are often used planetary gears because they are compact and cheap. As soon you rise the input speed, the efficiency of those kind of gears drop because you incur in hydrodynamic loss (for a series of problems that are connected to the level of oil that you need to keep in the gear housing). Probably if you are using an SR motor, you want consider to use an angular stage like first reduction after the motor.

I’m not too sure if I would use a battery like energy storage. Batteries take time for convert from electrical to chemical. Most of the braking will happen in a short time so you will end up burning most of the regenerated energy trough a braking resistor (the DC bus can’t go up to infinite about voltage). If you are driving a dozer that has a very low efficiency (most of the vehicle kinetic energy will be burnt in the tracks etc. and very little will arrive to the SR motor to be regenerate), probably the regeneration is not too important, on other vehicle is maybe more important so look to capacitors or flywheels for storage is probably more appropriate.