Category: Blog

AQ: Flashover in busbars

As for XLPE cable testing, if XLPE is used for insulation in the switchgear, the cross linking will be treed by HV DC and permanently destroyed. For this reason, HV DC is no longer used for XLPE cable testing. The switchgear should have a power frequency withstand test only and not HV DC. Refer to the relevant switchgear standard for the applied rms voltage. Any XLPE insulation will need to be replaced as it is most likely has been damaged by treeing of the cross linkages in the insulation. A maximum of say 2.5 kV DC is allowed for IR and PI only.

Humidity plays important part in flashover. We faced a problem of flashovers in Air insulated 11kV Switchgear busbar compartments in rainy seasons. Any sharp edge will ionize the surrounding air, which becomes conductive to high voltage discharge. Moisture will hasten the process of discharge. During HV test also this aspect should be kept in mind.

And make sure the following:
Clean all the supporting bus insulators and spouts with CRC spray.
Ensure the earth bus continuity and its connection with the earth grid.
all PTs are taken out.
all CT ckt output shorted at the panel.
All LAs are disconnected
Conduct a general cleaning of busbars through CRC-sprays.
Megger the bus bar with 5KV between phases, and between phase to earth for 1 mints before HV test.
Ensure the earth bus continuity and its connection with the earth grid.
Use AC high voltage test preferably
Connect HV test kit body ground to the SWGR body ground.
Apply 80% of the power frequency voltage applied at the FAT test.
If you are doing with AC hv kit then this may be a larger unit and leakage current is exceeding and tripping.
Try for smaller sections of busbars/increase the leakage current if options are available.
Rate of rise of voltage should be in steps of 2KV/s and gradual.
Check tripping function of the test kit.
Apply voltage betweenL1-(L2+L3)=G-1mints
apply voltage in the same way between other phases also.
If it withstands ok alternately you have to go for individual inspection of the insulators/spouts.

AQ: What is the surge impedance load

The surge impedance loading (SIL) of a line is the power load at which the net reactive power is zero. So, if your transmission line wants to “absorb” reactive power, the SIL is the amount of reactive power you would have to produce to balance it out to zero. You can calculate it by dividing the square of the line-to-line voltage by the line’s characteristic impedance.

Transmission lines can be considered as, a small inductance in series and a small capacitance to earth, – a very large number of this combinations, in series. Whatever voltage drop occurs due to inductance gets compensated by capacitance. If this compensation is exact, you have surge impedance loading and no voltage drop occurs for an infinite length or, a finite length terminated by impedance of this value (SIL load). (Loss-less line assumed!). Impedance of this line can be proved to be sqrt (L/C). If capacitive compensation is more than required, which may happen on an unloaded EHV line, then you have voltage rise at the other end, the ferranti effect. Although given in many books, it continues to remain an interesting discussion always.

The capacitive reactive power associated with a transmission line increases directly as the square of the voltage and is proportional to line capacitance and length.

Capacitance has two effects:

1 Ferranti effect
2 rise in the voltage resulting from capacitive current of the line flowing through the source impedances at the terminations of the line.

SIL is Surge Impedance Loading and is calculated as (KV x KV) / Zs their units are megawatts.

Where Zs is the surge impedance….be aware…one thing is the surge impedance and other very different is the surge impedance loading.

AQ: Motor connection

Many years ago I had an experience of 4nos 37kW fin-fan motors wrongly connected at site to a star. After running for almost 1 year, the operators reported these motors were very warm and felt unusual. We removed one of them to the workshop and opened for inspection. All windings were OK but the rotor lamination surface had turned to light blue colour which showed a sign of abnormal heating.

I asked different experts in the industries for advices. From the advices, we suspected the motor could be designed for a delta connection even though the nameplate indicated a Star connection for 415V. We contacted the motor manufacturer by quoting the motor serial no. The manufacturer confirmed that the motors were designed for delta connection at 415V. The manufacturer apologized for the error in nameplate and gave us a free spare motor.

One clear sign that could lead us to believe that the motor was in a wrong star connection instead of delta was, for a 2 or 4-pole motor the no load running current should be more or less around 30% of FLC. When we tested run the motor in the workshop, the no load current was less than 15%xFLC.

After the rectification of all the 4 motors to delta connection, we had no complaint anymore. It was a good lesson out of this solved problem.

AQ: Difference between DCS and RTU

DCS distributed control system: you can control the system within a certain given facility from different locations, either control room or other places, and you should keep in mind this facility could be a in several locations but yet, hard-wired interconnected. while
RTU (remote Terminal Unit): you can control the system remotely through internet or a secure satellite connection which in not recommended for sensitive operations/process but it is ok for stand alone and not crucial systems. and more.

DCS as part of SAS (Substation Automation System) is based on local control of relays, meters and switchgear and automation as per required logic and programs that could be hardwired for serial protocols (like DNP 3.0) or through fiber optic when UCA 2.0 or IEC 61850 protocols are used.
For RTU, it’s just interface between substations’ I/O signals and dispatching center (SCADA) through communication links and specific protocols (such as IEC 101,104, Indactic, DNP 3.0, etc.). In other words, RTU has no controlling role by itself, but DCS as part of SAS has all programmed control logic within substations and without even connecting to dispatching center.

For Electrical Network Distribution, a System is required for controlling, Load dispatch as well as monitoring. Therefore Distribution Management System (DMS) or DCS to be adopted as an integrated System. They are simply like SCADA. Composed from Hardware, software, interfacing means & communication media / protocol as indicated above.
RTU (remote Terminal Unit) include Processor and all the required interfacing facilities as well as I/O(s) Modules.

The brief description of such system may be as follows:
The Substation prescribed Signals (MV switchgears, Transformer, Substation Auxiliary Equipment, etc.) to be hardwired to a marshaling box to Interface Cubicle where RTU located, RTU to be patched to the interface plate. Via the selected media “say FOC” the signals will be transferred to the DMC/DCS Control Centre. Accordingly, the real time status of the NW can be monitored and controlling can be achieved from remote.

The aforesaid Signals to be listed and sorted as per the required application to facilitate system configuration, integration and programming (unique address, function, type, is it required for control, monitor or both, which is digital & which is analogue, etc.).

AQ: AC motor maximum torque

As per Torque/Slip characteristic for AC Motor, the value of the Max. Torque can be developed is constant while the Starting Torque occurs @ S=.1, (T proportional to r2 and S also proportional to r2 where r2 is the rotor resistance, the ratio r2/x2 when equal to 1 gives the max. Torque w.r.t Slip at Starting. Wound rotor motors are suitable and recommended for application for MV drive where it is required to be started on load such as ID. Fans, S.D Fans, Drill, etc.

As you aware the torque is directly proportional to the rotor resistance “r2” & varies with slip “S”, hence injection of resistance into the rotor via Slip Rings, High Starting Torque can be got while the Speed, efficiency and Starting current will be reduced. Therefore resistance is the most practical method of changing the torque (i.e. wound rotor Slip ring Motors). Moreover, the Max torque can be achieved at starting when rotor Resistance “r2” = The Stator impedance, at starting S=1.

On the other hand, the slip of the Induction Motor (speed) can be changed by “extracting” electrical power from rotor circuit, more extraction increases the slip. By using thyristorized Slip-Recovery Scheme “ i.e Kramer Scheme” feedback of Power from rotor circuit to supply circuit which also known as “the slip Power recovery scheme”. The scheme is simply consists of rectifier and an inverter connected between slip-rings and the A.C Supply circuit. The Slip Rings voltage is rectified by the rectifier and again inverted to AC by the inverter and feedback to supply via a suitable Transformer. Such arrangement gives good efficiency with high cost due to Rectifier and Invertor.

AQ: Add filters to frequency inverter to eliminate harmful

The high frequency edges of switched waveforms can cause capacitively coupled currents to flow from windings to frame, returning through the bearings, and these can accelerate corrosion in the bearings, causing early failure. Small filters on the motor leads allowing these currents to return locally to ground will avoid this.

The best way, though, is to use filters which can eliminate sharp transitions and leave only (like +/-10% ripple) fundamental frequency (motor’s RPM at given point) of the motor drives. However if somebody can handle 40 – 50kHz of the switching frequency the filter’s size shrinks dramatically and it is not too expensive anymore. Again, the problem is in ability to handle 100 (or so) kWs and 50kHz together.

AQ: How to select the right cable?

Before you select kind of cable for your consumer, you need to calculate expected operating current of cable which depends from rated power of your consumer. After that, before you select kind of cable for your consumer, you need to check size of cable which needs to satisfy next conditions:

1. you need to check cable if it satisfied limits in normal conditions without consequences in aspect of warming (normal work),

2. you need to check cable if he satisfied limits in abnormal conditions without consequences in aspect of warming (short circuit).

1. when you want to check cable if he satisfied limits in normal conditions, you need to choose installation place (trench, concrete channel etc.), you need to know heat resistance of land, you need to know appropriate temperature of land and you need to calculate number of cables in installation place.

Icalculate=number of cables*k1*k2*k3*k4*Irated cable>Irated (consumer)
k1 depends from installation place,
k2 depends from heat resistance of land,
k3 depends from appropriate temperature of land,
k4 depends from number of cables

2. when you want to check cable if he satisfied limits in abnormal conditions, you need to calculate expected current of short circuit and heat impulse in the place of installation.

If your cable satisfied these requirements, then you made the right choice.

AQ: Starter of SAG Mills with rotor resistance

Q: For now I am working on a mining project which involves starting two SAG mills, the method of starting these mills is by rotor resistance and likewise we are using an energy recovery system (SER), could someone tell me how this system works SER? Each mills have two motors of 8000 kW at 13.8 kV.

A: For large mills requiring variable speed, the wound rotor motor and SER drive are economical for a total rating of approximately 2MW to 16MW. Above 16MW, the gearless drive (cyclo-converter) is typically used because gearboxes and pinion gears reach their present limit in size. Around 2MW and below, the squirrel cage/VVVF drive is simple and cost effective.

Advantages of the wound rotor/SER drive are:
1. If the SER converter drive fails, the drive can be switched to fixed speed bypass – starting the usual way with the LRS.
2. The converter only needs to be sized for 15-20% of the total motor rating with associated reduction in floor space, air-conditioning etc. The converter is only sized for the feedback energy which is proportional to the speed difference from synchronous speed. The drives are typically set up to run between about 85% to 110% of synchronous speed for an optimized arrangement.
3. Relatively low capital cost when all things considered – including spare motor cost etc.

Brush/slip ring maintenance is one issue. However, when the brushes are specified correctly for the load, the wear is manageable. Once the maintenance program is set up for shutdowns, it is not a major issue.
I expect that this type of drive would be the most common large mill variable speed drive in the world’s minerals processing industry for the range mentioned above for the last 15 years (approximately).

The SER drive converter controls the voltage in the rotor. Motor speed is proportional to rotor voltage. Resistance in the rotor indirectly achieves the same thing (with a different torque curve shape), but energy is lost in the resistors which is very inefficient. The SER drive via a feedback transformer feeds energy back into the power supply. This returned energy is proportional to the speed difference from synchronous speed. So at say 85% speed, 15% of the motor rated power is returned from the rotor to the supply. At a hypersynchronous speed, the SER drive feeds power into the motor rotor allowing it to run faster than synchronous speed. So for a fixed torque and higher speed, the power obtained from the motor is higher than the motor nameplate rating.

Gearbox ratio is best set up to allow the speed range to be covered using the SER drive’s hyper-synchronous capability.

AQ: Are variable speed drives harmful to motor?

Variable speed drive switches very fast which brings high dv/dt on motor. How often do we face with problems coming with VSD? How harmful is the common mode currents in windings and other parts of motor due to high dv/dt. Do we see winding isolation failure? How much does the life of motor reduce? Also, is the filtering of voltage at the output of inverter common or applicable practice in the field?

The waveforms for the INVERTER are not good to the motor…. Makes the motor run hot and less efficient….. and all the above….
In-line filters to reduce harmonics is a must in many cases…
Depending on power levels you can have in line reactors for CM and DM or balanced bridge methods for CM… There is methods of harmonic canceling with reactors called harmonic blockers, where you arrange the 3 phase windings in such a manner to cancel certain harmonics….not all harmonics will be blocked, usually in grouping intervals…you need to be aware of what harmonics are your worst offenders…

Mostly in medium and high voltage motor drives the very fast change of the voltage can induce high capacitive currents inside the motor with harmful results.
A way to reduce this negative effect is to increase the number of voltage steps (levels) such that the dV/dT will decrease proportionally (dT=turn on switching time, dV=one voltage step). The most popular method used is SVPWM (space vector sine PWM) NPC (neutral point clamped) multilevel frequency converter. Line L-C filters are also used for EMC.

The first step in any filter analysis is knowing what harmonic vectors your dealing with.
Mathcad is a great tool for modeling the PWM modulation with the sub carrier and generating the harmonic matrices..vectors…I usually go above the 100th harmonic in some analysis, then doing this over the operating ranges of the motor….you then pick your Worse Case operating point and now you have a matrices to work with…. Summing the harmonic magnitudes will give you an idea of how much garbage your feeding your motor windings.

They could be harmful for high frequency current and voltages which are not economical to be eliminated.
But this weakness is so neglect able to the benefits providing. These benefits are very comprehensive. The harmful harmonics are controlled by the standards, so in order to improve harmonic characteristics, we need an improved standard.

AQ: What is the best laptop for field work?

Dell D630 – it is the best laptop for field use I have used. And for some applications standard RS232 port is a must. We have Freja 300 test set which totally refuses to communicate with PC via widely available cheap USB-to-serial adapters. The only usable adapter I have found is semi-industrial type, costing about 50 Euro. Not that a price is so much concern, but it is not very convenient to deal with additional boxes, power supply units for them, etc. when commissioning at field.

But I do not expect you will have problems connecting Omicron via converters. We have been used CPC256 via various USB-RS232 converters without serious problems.
For communication with relay protections from Siemens and AREVA never had problems too. Cannot remember how it was with older ABB relays (last case we used them was 4 years ago), but newer ABB series are all with Ethernet communications.

So my advice will be – by special laptop for field work, not mix it with that for everyday office use. Load it with the minimal necessary software – MS Word, Excel, Adobe Reader, Omicron’s Test Universe and software for relays which will test.
For all these needs most older type laptops (4-5 years older) would be sufficient and you can buy for 200-300 Euro solid business class laptop. And also very important: look for non-glossy displays only!