AQ: Power Transformer power losses

Power losses of ferromagnetic core depend from voltage and frequency. In case where is no-load secondary winding, power transformer has a power losses in primary winding (active and reactive power losses) which are very small, due to low current of primary winding (less than 1% of rated current) and power losses of ferromagnetic core (active and reactive power losses) which are the highest in case of rated voltage between ends of primary winding…

Of course, we can give voltage between the ends of primary winding of power transformer (voltage who is higher from rated voltage), but we need include some limits before that:

1. if we increase voltage in the primary winding of power transformer (voltage who is higher from rated voltage), we need to set down frequency, otherwise ferromagnetic core of power transformer will come in area of saturation, where are losses to high, which has a consequence warming of ferromagnetic core of power transformer and finally, has a consequence own damage,

2. if we increase voltage in the primary winding of power transformer (voltage who is higher from rated voltage), also intensity of magnetic field and magnetic induction will rise until “knee point voltage”: after that point, we can’t anymore increase magnetic induction, because ferromagnetic core is in area of saturation…

In that case, current of primary winding of power transformer is just limited by impedance of primary winding… By other side, in aspect of magnetising current, active component of this current is limited by resistance of ferromagnetic core, while is reactive component of this current limited by reactance of ferromagnetic core.

There is a finite amount of energy or power that can be handled by various ferromagnetic materials used for core material. Current increases greatly with relatively small voltage increases when you are over the knee of the magnetization curve characterized by the hysteresis loop. Nickel/steel mix materials saturate at lower flux densities than silicon steel materials. 50ni/50fe materials saturate at about 12kG; 80Ni/20Fe as low as 6kG. Vanadium Permendur material saturates at levels as high as 22kGauss- Nano-crystallines- 12.5kG (type), Ferrites -typically over 4kG at room, decreasing as temperature rises. What causes saturation?: Exceeding material limits.

ABBdriveX