Category: Blog

AQ: Motor connection

Many years ago I had an experience of 4nos 37kW fin-fan motors wrongly connected at site to a star. After running for almost 1 year, the operators reported these motors were very warm and felt unusual. We removed one of them to the workshop and opened for inspection. All windings were OK but the rotor lamination surface had turned to light blue colour which showed a sign of abnormal heating.

I asked different experts in the industries for advices. From the advices, we suspected the motor could be designed for a delta connection even though the nameplate indicated a Star connection for 415V. We contacted the motor manufacturer by quoting the motor serial no. The manufacturer confirmed that the motors were designed for delta connection at 415V. The manufacturer apologized for the error in nameplate and gave us a free spare motor.

One clear sign that could lead us to believe that the motor was in a wrong star connection instead of delta was, for a 2 or 4-pole motor the no load running current should be more or less around 30% of FLC. When we tested run the motor in the workshop, the no load current was less than 15%xFLC.

After the rectification of all the 4 motors to delta connection, we had no complaint anymore. It was a good lesson out of this solved problem.

AQ: Cable faults/fails

There are only 2 distinct types of Cable fault
1. Due to system Parameter or operating conditions – which you have to take care at the initial design stage for selection of the cable. There is a long list of checks – Design Engineers know.
For example, if 50 sq.mm cable is adequate for a particular Load, you may have to choose higher size in relation to the Fault Level. In urban Distribution system, you will find large size of cable is connected to a small size distribution Transformer.

2. Failure of Cable does not normally occur in the run of the cable unless it is damaged for external reasons. Damaged cable may not fail unless there is ingress of moisture / water through the damage. You will find cable failing during rainy season, high tide in the coastal areas.

Cable fails at the joints mainly because the (construction) characteristics of Cable are changed at the joints – joints become weak links in the run of the cable.

It is a well documented phenomenon that underground cables fail a week or so after lightning activity. Some of the can be attributed to lightning surges that enter the primary conductor and reflect off an open as you indicate. I believe the majority of the failures come from lightning strikes on adjacent structures or trees that reach the cable through ground and cause slight damages to the cable insulation. The maddening part related to customer service is the cables end up failing on a sunny day. Most customers understand outages during inclement weather but are not so understanding of outages on clear days.

AQ: Motor short circuit protection

In motor protection panel when 3 fuses are provided for short circuit protection, Is it always a condition that during short circuit minimum 2 fuses should be blown? If yes or no then why?

Because fuse is a type of low resistance resistor that acts as a sacrificial device to provide overcurrent protection, of either the load or source circuit.

Its essential component is a metal wire or strip that melts when too much current flows, which interrupts the circuit in which it is connected.
Short circuit, overloading, mismatched loads or device failure are the prime reasons for excessive current.
2 fuses are must & should blowing in motor control panel due to motor each winding sets are connected to 2 phase in delta connection (each winding set is works on 440 Volts power supply).

We need to identify the types of short circuits which can be experienced in a motor and if you are talking of 3 fuses for short circuit protection, it means you are dealing with a 3phase motor. All things being equal, a three phase motor should be balanced in operation hence the current in each phase must be the same.

If a short cct occurs, it could be a phase to frame ( L-E),or phase to phase(L-L)or even 3phase (3L) short cct. In each case, the fuse that ruptures will depend on its condition, rating, type and class. If a fuse has been subjected to various loading and abnormal conditions, the tendency to rupture faster exists. If I should view your question from the perspective that all fuses are of the same type, class and subjected to the same condition and motor windings are same and in the same healthy condition, then a L-E fault should not necessarily cause other fuses in the motor cct to rupture immediately. It should be the defaulted line. And if it happens, the motor will not be balanced which in turn causes the other fuses to rupture in turn due to increase in current. It is always better to use a circuit breaker to isolate all the lines in the event of a fault.

AQ: What causes cables to fault during weather seasonal changes?

I currently work for a small utility with a small amount of underground installations but a lot of it is aging and failing during weather changes. I am curious as to why it happens during weather changes and if there are scientific facts that can support it? Is there a way to predict when a cable will fail based on weather patterns? I’ve heard of different opinions on the matter, but is there a proven reason why? It is my goal as a young engineer and Gonzaga T&D engineering graduate student to learn more about these phenomena’s and what better way than to hear it from industry professionals in a technical discussion?

Scenario #1: Lightning strikes during summer on power cable installations can cause voltage spikes on the line, which in turn doubles back when it finds the open point on an underground cable installation. The initial voltage spike can cause the insulation of the cable to deteriorate or fail, and the reflection of the surge can cause the voltage to spike which can then finish off the already deteriorating insulation if it hadn’t faulted from the initial surge. Side note: This is why it is good practice to have transformers with load on them at the end of a cable run, or lightning arrestor at the termination points of an underground run and not just an open switch. Faults, recloser operations and other switching events can also cause a voltage spike on underground installations which can break down the cable insulation, thus making it more susceptible to failing after future events.

Scenario #2: Cables could fail more during the weather change due to the stresses that are inserted in to the cables during heavy irrigation motor start-ups and operation. Today you will see more soft-starts on your pump motors. With older cable supplying energy to older pumps you may find an across the line motor starter at the end of it. Cross-line starters rapidly heat the cables that have laid dormant over the cold winter months. If there was any sort of treeing, insulation deterioration, rodents chewing on the dormant cable, dig-ins, or any other common cable damaging scenarios during the winter, the startup will speed the deterioration process up in these locations, which in turn lead to cable faults.

Scenario #3: In areas where older open concentric cable has been installed, you are most likely experiencing many faults if it hasn’t already been changed out for newer jacketed solid-dielectric cable. As the ground dries out in the spring/summer, you will see higher resistances on the return path of the old and deteriorating open concentric neutrals. Without the cable being in wet conditions as it was throughout the winter, the electric field around the cable is no longer uniform and in some cases is a complete loss of your neutral.

Regardless of the insulation you use on cables, you most likely have faults. Maybe you’ve been “lucky” and it’s only in your joints and terminations? Regardless of which type of cable insulation, temperature has a significant impact on the dielectric withstand of the cable (i.e. higher temperatures will result in lower dielectric strength properties). Drying conditions also equates to higher insulation temperature due to poor heat transfer characteristics of your cable.

There are some common points in each of the above three scenarios but there really isn’t any scientific proof, just observations. Does it depend on your system load factor, your power factor, your installation practices, or even your cable design? Is it all of the above or is it much more simple than that? Is it different between different manufacturers of cable? Are there different scenarios that you’ve seen or heard of?

AQ: Ground fault detection in a Delta system

We have system which is connected to 16kV/2.4 utility transformer (delta on secondary) and we are using 2.kV/480V transformer for loads after 2000ft. Utility wants to protect against ground fault in the system. I am planning to select a ground over voltage relay using a broken delta PTs on secondary. I am having problem with calculating the 3Vo value, How much voltage will you set to trip the relay for SLG or LLG fault.

Let’s say you have a system 16kV/2.4kV with more than one, say 5 transformers T1, T2, T3….T5 interconnected transformers throughout your network, with the broken delta arrangement to detect the residual voltage on each of the transformer’s delta side, If you have an earth fault say on the LV of T1, the voltage displacement gets picked up on the delta side of all 5 transformers and there is a very high probability that all 5 transformers get taken out. This is because this scheme does not look for the earth fault current or where it exists, as long as it is on the interconnected system where the source is able to support the earth fault. The moment it notices a voltage displacement, bang goes your CB to clear the fault irrespective of it’s location.

A better scheme is to use the zig-zag transformer which offers a low impedance for zero sequence currents, generally used with a neutral grounding resistor to limit the current to more often than not the rated current (or lesser than that) of the transformer LV. So in a similar situation for an earth fault on T1 LV, the earth fault completes it’s path through the earthed NGR resistor and back to the fault point. A sensitive earth fault relay connected to a CT connected between the grounded resistor and the neutral point of the zig-zag transformer, designed to take out both the HV & LV CBs of T1 will do the job, without fear of taking out the other transformers.

Of course if this is the only transformer you are talking of, then the voltage displacement method should work in principle, however I would still go ahead and install the zig-zag arrangement described above. Let me know your thoughts, and then we can start discussing about the magnitude of 3Vo or 3Io as the case may be.

When we talk about detection of Earth Faults, that means we want to know it without tripping, so, we should absolutely use “IT Earthing system” for LV side, then with this system we can use “IMD – Injection Monitoring Devices” that monitor when it happen, and if wanted send the tripping order to the installed Circuit Breaker.

By the way:
1- As the transformer’s connection of secondary side is “Delta”, we use one of 3 phase to be connected via a special impedance to the earth to have “IT” system. Noting that for some of “IMD” we don’t need to use the special impedance as it’s integrated inside the IMD.
2- In the most of “IMD” we can adjust the value of “Insulation level” where above of this value an Alarm signal by auxiliary contact will be sent.
3- Some of “IMD” have 2 levels can be adjusted “1st level for Alarm” and “2nd level for tripping”.

AQ: The effect of power failure on VFD

Q: I am planning to put some variable frequency drives on non-critical section of factory where there will be planned interruption of 30 seconds but 2 times a day.

A: Why are you going to use VFD, variable frequency drives are expensive. What is the application?
If the application require fix speed / rate Soft Start device is required.

However, if there might be frequent start stop (Power OFF/ON) AC Contractor Duty AC3 are recommended to be used to bypass the Soft Starter or Static device once the required motor speed is reached and then Start/stop have no impact on the installation.

The technique of using AC3 Contactors, is not applicable for VFD if the VFD is necessary for application. In this case the other advantage associated with VFD no longer will be valid (Protection, control and monitoring).

AQ: Load Break Switch VS Circuit Breaker

There are two important different parameters as far as the disconnection/connection of Electrical utilities is concerned.
– Breaking capacity.
– Making Capacity.

Making capacity is more higher since it is considering the initial starting current, inrush and faults that might occur at switching on moment.

Accordingly, the Circuit breakers have both while the Isolator or LBS has only breaking capacity. Isolator therefore used to isolate/disconnect/break load. To be switched on only under no load.

Basically and LBS is only designed to make and break load currents. It can be closed onto a fault (has a making rating) and cannot break a fault current. A CB is designed to make and break fault currents and off course load currents. Need to be careful with switching long cables and long lines with LBS, due to its limitation with switching cable/line charging (highly capacitive) currents. Similar precaution with needed with switching reactive loads like large transformers. Normally a CB is recommended for the 2 latter cases. Check the manufacturer test specs.

In simple way the Load Break Switch used to cut off healthy circuits or to break / disconnect the load. As a precaution, normally the LBS / Isolator are to be switched on under no load, the connected load to be utilized after switching on the Isolator. This why it has no making capacity. Circuit Breakers are intended to operate under unnormal conditions in order to clear the fault & to isolate the defective circuits protecting its associated electrical equipment, therefore breaking and making capacities are considered as the most important criteria as far Circuit breaker are concerned.

The making current is not an RMS value it is the peak value ie. Impk = 2.5Irms. The peak value of 2.5 times RMS is the DC offset at point when the LBS closes on the fault and is taken as the worst case X/R ratio of the source (X/R of about 20). This peak decays to RMS value Ith (thermal withstand current) dependent on the X/R delay constant. The decay rate is exponential with time. There is a misconception that making is 2.5times breaking current, but making is normally quoted as a peak and breaking as RMS. The breaking current in a CB is an RMS value. Breaking fault current is far more difficult that making especially when the contacts open when current is not at zero crossing point on the sine wave. For HV systems 132KV and above, the restrike and TRV starts to become a major consideration in CB selection, especially for long cables and lines.

AQ: Parallel operation of autotransformers

Q:
We have 2 no 160MVA 220/132/11 kV transformers with short circuit impedance 46.06 ohm, and one 160MVA transformer, 220/132/11 kV with % impedance 15.02%. Can we parallel these three transformers?

A:
Indeed, the vector group is an important (mandatory) consideration when connecting transformers in parallel. And also important if a transformer is going to close a loop in either the HV or LV sides.

But it is perfectly OK to parallel transformers with different impedances. All it is going to happen is an uneven distribution of the power flow, among the parallel transformers. The unit with the lowest impedance would carry a larger share of the load.

Regarding “same ratio”: are you talking about the transformer ratio, such as 138/230 kV? Or are you talking about tap positions? Within certain constraints, it is possible to parallel transformers with different ratios (let’s think, for a second, of identical transformers at different tap positions). This is not recommended, though, because of reactive power circulation.

So, without disagreeing with the factors that you have listed, I would like to re-order, if you will, the conditions you have described:
1) Mandatory: making sure that the vector group and nominal voltages of transformers being considered for parallel operation are indeed adequate and compatible with the intended parallel operation
2) Desirable: ability to operate parallel transformers at the same tap positions or as close as possible, to minimize reactive current circulation
3) Almost indifferent: identical impedances on the parallel transformers simplify things a bit, but this is not a “show stopper” for parallel operation of these transformers. Actually, it is more realistic to expect some differences in impedances, even for otherwise “identical” transformers (same manufacturer, same nameplate ratings, etc.)

For the “Y-Y- Delta” transformers operated in parallel, there exist two kinds of the circulating currents between the tanks and between the banks of the delta side. As the circulating current between the tanks is 90 degree out of phase of the load current, it is estimated by decomposing the line current into the component 90 degree out of phase of the load current. The circulating current between the banks in the delta side is estimated from the delta winding current and the line currents.

The estimated circulating current depends on the power factor of the system even with the same tank currents. This characteristic is derived from the view point of the active and reactive power. Also, it needs the voltage as well as the tank and the load currents.

AQ: Parallel connection transformers

AQ: What happen if we put a magnet near digital energy meter?

In the “olden” days when there were only moving disk meters, I heard that people drilled small holes into the Bakelite cases and tried to get spiders to make a web inside the meter and slow the meter down. It probably wasn’t true, but there have always been people trying to get something for nothing.
I also heard that some people were using a welder and found that their moving disk meter went backwards, but it depended where they positioned the welder, and how strong the welding current was.

Back to electronic meters, if there are transformers inside the electronic meter, placement of a magnet as close to this transformer as possible could cause over fluxing every half a cycle, this could cause a diode like affect in the meter electronics, and if the electronics are designed to eliminate harmonics for calculating energy usage, then the magnet has let this person pay less for electricity, i.e. steal electricity.

Of course the meter may also have a detection circuit for high harmonics and send a message back to the utility to say the harmonic level is too high and a serviceman may then discover this magnet.
I do know that some electronic meter IC manufacturers have added a bump circuit into their ICs so I am sure they have thought about this sort of trickery too.

I like everyone paying full dollar for their electricity, otherwise most of us are carrying the small number of people doing these sorts of things.

“Meters should offer compliance to requirements of CBIP-304 and its amendments for tampering using external magnets. The meter should be immune to tamper using external magnets. The meters should be immune to 0.2T of A.C. magnetic fields and 0.5 T of D.C. magnetic fields, beyond which it should record as tamper if not immune.”
The above statement is a requirement during the manufacturing of digital energy meter. Hence we shall assume that digital meters are tamper proof using Magnets.