AQ: Experience: Flyback
My first SMPS design was a multiple output flyback. This was in 1976, when there were no PWM controllers. So I used a 556 (1/2 osc -30 kHz, and 1/2 PWM generator) plus used a 3904 NPN where the VBE was the reference and also provided gain for the error amp function. I hap-hazardly wound the windings on a 25 mm torroid. It ranglike a tank circuit. I quickly abandoned the transformer and after a year, and many hours on the bench, I had a production-grad SMPS.
Since it went into a private aircraft weather reader system, I needed an exterier SMPS which was a buck converter. I used an LM105 linear regulator with positive feedback to make it oscillate (one of nationals ap notes). It worked, but I soon learned that the electrolytic capacitors lost all of their capacitance at -25 deg C. It later worked with military-grade capacitors.
I had small hills of dead MOSFETs and the directly attached controllers. When the first power MOSFETs emerged in 1979, I blew-up so many that I almost wrote them off. They had some real issues with D-S voltage overstress. They have come a long way since.
As far as very wide range flyback converter, please dig-up AN1327 on the ONSEMI website. This describes a control strategy (fixed off-time, variable on-time) and the transformer design.
The processor to that was a 3W flyback that drove 3 floating gate drive circuits and had an input range of 85 VAC to 576 VAC. It was for a 3 phase industrial motor drive. The toughest area was the transformer. To meet the isolation requirements of the UL, and IEC, it would have required a very large core, and bobbin plus a lot of tape. The PCB had the dimensions of 50 mm x 50 mm and 9 mm thick A magnetics designer named Jeff Brown from Cramerco.com is now my magnetics God. He designed me a custom core and bobbin that was 10 mm high on basically an EF15 sized core. The 3 piece bobbin met all of the spacing requirements without tape. The customer was expecting a 2 – 3 tier product offering for the different voltage ranges, but instead could offer only one. They were thrilled.
Can be done, watch your breakdown voltages, spacings and RMS currents. I found that around 17 -20 watts is about the practical limit for an EF40 core before the transformer RMS currents get too high.